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Abstract—From delivering groceries and vital medical supplies
to driving trucks and passenger vehicles, society is becoming
increasingly reliant on autonomous vehicles (AVs). It is therefore
vital that these systems be resilient to adversarial actions,
perform mission-critical functions despite known and unknown
vulnerabilities, and protect and repair themselves during or after
operational failures and cyber-attacks. While techniques have
been proposed to address individual aspects of software resilience,
vulnerability assessment, automated repair, and invariant detec-
tion, there is no approach that provides end-to-end trusted and
resilient mission operation and repair on AVs.

In this paper, we describe our experience of building START,1
a framework that provides increased resilience, accurate vul-
nerability assessment, and trustworthy post-repair operation
in autonomous vehicles. We combine techniques from binary
analysis and rewriting, runtime monitoring and verification, auto-
mated program repair, and invariant detection that cooperatively
detect and eliminate a swath of software security vulnerabilities
in cyberphysical systems. We evaluate our framework using
an autonomous vehicle simulation platform, demonstrating its
holistic applicability to AVs.

Index Terms—resilience, availability, autonomous vehicles, au-
tomated program repair

I. INTRODUCTION

Robotic autonomous systems (RAS) are on track to become
a lynchpin of modern society, helping to solve problems
in both commercial and national defense applications, from
home delivery [5] to self-driving cab services [31], [32], to
agricultural [71] and remote delivery and rescue operations [2],
[69]. RAS typically consist of networked embedded devices
that sense and interact with the physical world. This interface
to the physical world positions RASs as computing substrates
where cyber attacks against them can cause injuries to humans
and damage to property [26].

*Both authors contributed equally to the work and are the corresponding
authors: kevin.leach@vanderbilt.edu and ctimperley@cmu.edu

1Software Techniques for Automated Resilience and Trust

A wealth of research exists concerning the safety of de-
ploying RASs in situations with possible human and material
costs [52]. For example, the DARPA High-Assurance Cyber
Military Systems program led to formally-hardened embedded
systems that are more difficult to hack [23]. However, there is
little work to provide both assessments of trust (the operator’s
belief that the vehicle is dependable and the willingness to
accept associated risk [55]) and resilience (i.e., the ability to
safely recover from or avoid errors, attacks or environmental
challenges and complete the original mission or a variation
thereof) [79], [30]. Overall, while RAS security and trustwor-
thiness is a well-understood problem [37], [75], [15], current
efforts focus on identifying and mitigating individual emerging
threats rather than providing end-to-end security solutions that
collectively harden these systems, and detect and respond to
malicious behavior at runtime.

In this paper, we describe our experience adapting and
combining both novel and existing techniques to form an end-
to-end cohesive security framework, START, that provides trust
and resilience using binary hardening, continuous measure-
ment, automated program repair, and invariant detection. We
demonstrate START’s applicability to the problem of hardening
an Uncrewed Aerial Vehicle (UAV) platform. Our goal was to
develop an overall security solution that hardens RASs against
cyber attacks, detects when cyber attacks may be occurring
during operation, and automatically repairs compromised RAS
software to restore trustworthy behavior and enable it to
continue operating under hostile circumstances.

START combines several components. First, we employ
binary analysis and translation to harden off-the-shelf binary
programs without requiring access to source code [35], [38].
Such techniques reduce opportunities for attackers to exploit
the original software by transforming it in a way that is not eas-
ily predicted. Similar binary transformation techniques have
enjoyed success on conventional desktop and server platforms;
however, they have not yet been applied to embedded RAS



platforms, whose resource constraints introduce significant
engineering and conceptual concerns.

Second, we employ continuous monitoring of vehicle
telemetry and execution observables to assert when the RAS’s
performance deviates from a defined trusted operating region.
While intrusion detection systems (IDSs) are well-studied in
the security literature [17], [66], [51], straightforward applica-
tion of IDSs on telemetry and sensor data is insufficient in our
context. Although IDSs can be gainfully used to monitor the
hosts and network in the ground control/operation center, the
computer onboard a UAV has a non-traditional attack surface
and threat model. It is not directly connected to the Internet,
but instead connects with ground control over dedicated radio
channels for telemetry and control. The software is narrowly
focused on moving the vehicle according to mission plan, and
depends on specific sensor devices, (e.g., GPS, accelerometer,
barometer, etc.), which are not common in general purpose
computing systems. We therefore incorporated a runtime mon-
itoring mechanism that verifies if an execution of a mission
is safe and faithful, compared to an expected mission model,
and reports observed problems or abnormalities.

Third, we leverage automated program repair techniques
to dynamically identify and repair vulnerabilities automati-
cally [47], [56], [50]. Automated program repair identifies
program test cases that lead to failure, and systematically
changes the program’s source code until the tests no longer
exhibit the original failure, thus providing a restored level of
trust in spite of an attack occurring. Such techniques have
been widely evaluated in desktop and server contexts, but
with significantly less attention paid to embedded environ-
ments (e.g., [28], [39], [49], [83], [82]). Our instantiation in
START assumes source code is available, but we note that this
assumption is not fundamental [67], [29]. Embedded RAS and
UAV architectures introduce significant resource constraints,
a key challenge to typically resource-intensive dynamic pro-
gram repair. Second, such systems require mechanisms for
validating repairs, usually via test cases, which in this context
may require simulation or emulation of sensor inputs and
other hardware-adjacent concerns. Third, repair techniques
have not often been assessed in the context of an end-to-end
defense system. Finally, we increase trust in the dynamically-
generated patches post hoc by building on existing tools for
invariant generation (e.g., [22], [58], [59], [57]) to assess
the semantic differences between the original and patched
program. Invariant detection has been used in many software
engineering applications, and we extend and adapt this existing
work to provide trustworthy and resilient UAV operation.

We evaluate our framework using an autonomous vehicle
platform, demonstrating its applicability to cyber physical
systems. In an end-to-end evaluation of START, our approach
successfully defeats 12 out of 14 attack scenarios, designed
by a Red Team, and is able to safely complete its mission.

To summarize, we contribute a general framework that:
• Applies binary analysis to transform arbitrary, commer-

cially available RAS software to reduce the likelihood of
cyberattack,

• Uses runtime monitoring and verification to detect when
a cyber attacker successfully compromises a RAS,

• Leverages automated program repair techniques to deploy
patches on a UAV that patch vulnerabilities, and

• Incurs minimal runtime overhead, such tha it can be used
live in the field without interruption of system execution.

II. SUBJECT SYSTEM OVERVIEW

This paper describes our experience instantiating START
for a particular underlying UAV platform, ArduPilot.2 In this
section, we describe this subject system and our threat model,
highlighting how START’s components apply in this context.

ArduPilot: ArduPilot is an open source autopilot system
(UAS) that has been deployed to over a million vehicles rang-
ing from multirotors and helicopters to ground vehicles and
submarines.3 To demonstrate our approach, we implemented
START on an autonomous quadcopter running ArduPilot.
ArduPilot handles communications between the vehicle and its
operator and interfaces with the vehicle sensors and actuators
to perform a statically- or dynamically-defined sequence of
actions (i.e., a mission). The vehicle is controlled remotely
via MAVLink (Micro Autonomous Vehicle Link) [20], a
packed-based communication protocol for exchanging mes-
sages, including motion commands and telemetry updates,
between the vehicle and a ground control station software (e.g.,
APMPlanner [6] or QGroundControl [21]). Physical and link-
layer communication is achieved via radio telemetry devices,
where communications are unencrypted and rely on a System
ID number to distinguish multiple vehicles. Communication is
unencrypted and relies on a System ID number.

Threat Model: START is designed to detect and recover
from attempts to maliciously gain control of a RAS’s execu-
tion. We assume the attacker has knowledge of the platform
and its underlying communication protocols, and a scenario
involving with wireless communication with the system (e.g.,
telemetry), thereby allowing them to send packets to the RAS.
The attacker is assumed to use this communication link to send
crafted messages to hijack control of the RAS by corrupting
memory (e.g., through stack and heap overflows, format string
vulnerabilities, and ROP attacks). After gaining access, the
attacker can control vehicle behavior (e.g., crash the system,
navigate to a new location, report spurious data, etc.).

Overall Approach: Figure 1 illustrates the overall archi-
tecture of START. Given the platform we want to secure,
we begin with (1) access to the source code (and corre-
sponding binary), (2) a model normal vehicle operation (the
Trust Envelope), and (3) an attacker seeking to compromise
execution of software on the RAS. First, we transform and
harden the original compiled binary (Section III, Step 1⃝ in
the Figure). Next, we execute the hardened binary on the RAS,
and start running a mission (Step 2⃝). While the RAS executes
the mission, we continuously monitor sensor, telemetry, and
execution trace data to compare it against the predefined Trust

2http://ardupilot.org
3https://web.archive.org/web/20210225061416/https://ardupilot.org/about
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Fig. 1: A high-level overview of the START framework.

Envelope (Step 3⃝, Section IV). This monitoring can detect,
for example, a network-based attack that hijacks control of the
vehicle (Step 4⃝), leading to divergent vehicle behavior.4 This
resulting analysis is fed to the automatic repair component,
which constructs a repaired version of the vehicle software
source code that is not vulnerable to the original attack
(Section V, Step 5⃝). We compile the repaired version of the
source code, which we pass back through binary hardening
(Step 6⃝). This hardened repaired binary is then executed on
the RAS, where it is able to complete the original mission
while remaining resilient against the original attack (Step 7⃝).

Thus, our approach combines several existing techniques
together to improve trust and resilience in an ArduPilot system
that could be targets of attacks. Critically, START must be
able to run on the system itself, allowing it to autonomously
respond to and recover from cyber attacks as they occur. That
is, we can construct a repair within minutes while the vehicle is
online without human intervention. In doing so, we provide a
novel approach to applying autonomous healing and recovery
to RAS. We describe these tools and techniques in detail in
subsequent sections.

Asssumptions and Limitations: Our implementation of
START requires source code access to produce repairs and
provide certain (but not all) monitoring functionalities. How-
ever, source code access is not a requirement of our high-level
approach. For example, our automatic repair component could
be replaced with an alternative that does not require source
code (e.g., [29], [68]).

Upon detecting an attack, START instructs the vehicle to
loiter until a repair is found (approximately 10 minutes). Ten
minutes may be too long for a consumer drone (∼ 67% of
battery life), but for industrial/military drones or autonomous
ground vehicles, 10 minutes may be more feasible.

4We assume the attacker will want to compromise execution on the RAS.
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Fig. 2: An overview of the Zipr pipeline for binary analysis,
transformation and hardening.

III. BINARY HARDENING

Prior to the RAS mission (Step 1⃝ in Figure 1), START hard-
ens the embedded system binary, increasing its robustness to
attack, via the Zipr static binary rewriting infrastructure [86],
[33] and its suite of available security transformations plug-
ins [34], [60].

While Zipr has been shown robust and effective for securing
x86 desktop and server binaries, START sought to evaluate and
demonstrate its application to autonomous vehicle software.
In this section, we give a brief review of Zipr’s algorithms
for transforming and hardening software, in particular the
compiled RAS control software binary. This process is divided
into several phases, shown in Figure 2.

The IR Construction Phase (reverse engineering) accepts
a binary program (either an executable or runtime library)
and analyzes it to produce an intermediate representation (IR)
that is amenable to both analysis and manipulation. Reverse
engineering an arbitrary binary with no symbol information
(i.e., a stripped binary) is a challenging problem. In gen-



eral, given access only to a program’s machine, it is not
always possible to disambiguate between code and data [78].
In practice, most binaries can be reversed engineered with
enough precision to allow binary applications to be usefully
analyzed and transformed. However, note that higher precision
enables more precise transforms which in turn yields better
performance and security.

To facilitate various security analyses and transforms, this
process calculates the binary’s control flow in graph format.
This graph is called a control flow graph (CFG), as it is similar
in spirit to a typical compiler’s CFG, though in Zipr’s case it is
whole-program instead of per-function. Even under the conser-
vative assumption of perfect disassembly of a program’s binary
code, constructing a program’s CFG from its machine code is
still not a straightforward process. There are many compli-
cations: indirect control flow, non-return functions, functions
that share code, non-contiguous functions and functions with
tail calls. In the face of ambiguity, Zipr leverages address
pinning. Address pinning reserves particular addresses in the
program’s address space to deal with analysis ambiguity. For
example, if it is unclear from analysis whether a particular
instruction is used as the target of indirect control flow, that
address is reserved for the corresponding instruction and the
potential address-generation code is left alone. Thus, if the
potential address-generation is used for indirect control flow,
the program operates correctly and if if the potential address-
generation code is actually generating a particular constant,
that code also operates correctly. Consequently, for hardening
to operate correctly it is not necessary to precisely determine
the set of possible targets for every particular indirect branch
instruction; Zipr relies only on the fact that the set of all
pinned addresses contains at least all the addresses of possible
indirect branch targets in the original program. Further, this
mechanism allows Zipr to insert hardening instrumentation
before the target of an indirect branch by simply changing
the IR’s pinned address association to a new instruction.

Along with the CFG, the IR construction phase determines
a number of other properties of the binary including function
boundaries, the shape of each function’s stack frame including
incoming arguments, exception handling information, the live
registers at each point program point, leaf functions, etc., that
are necessary for extensive manipulation and transformation
of binaries.

After an intermediate representation of the binary has been
produced, we leverage Zipr’s transforms in a defense-in-depth
strategy by applying the following set of transformations:

• Block-level Instruction Layout Randomization (BILR)
randomizes the location of basic blocks.

• Stack Layout Transformation (SLX) adds stack canaries,
random padding to the stack frame, and optionally re-
orders stack variables.

• Heap Layout Randomization (HLX) supports heap-based
transformations, including padding and defenses against
double-free and user-after-free attacks.

• Global Layout Transformation (GLX) adds canaries and
reorders global variables.

• Selective Control-flow Integrity (SCFI) enforces the
control-flow graph obtained in the IR Reconstruction step.
SCFI is designed to thwart various arc-injection attacks,
including return-oriented programming attacks.

• Binary Auto Repair Templates (BinArt) selectively in-
tercepts libc functions and implements repair templates,
e.g., when the size of the target buffer in a C string
copy operation is known, ensure that the buffer does not
overflow and automatically terminate the string.

Finally, Zipr instantiates the transformed IR as a new
executable binary. By using different randomization seeds, the
final mapping of the IR to an output binary allows for the
creation of diversified binaries [33], significantly raising the
bar for attacks that rely on intimate knowledge of the binary
layout.

Whenever possible, START extends Zipr’s functionality with
the ability to record diagnosis information emitted by the
various Zipr security plugins, e.g. the location of a triggered
stack canary, the name of the function to which a repair
template has been applied, the address of an illegal jump
target, to help identify and localize attacks during the mission.

START also uses Zipr to harden binaries produced by the
automatic repair component of our framework in response to
detected attacks (Step 6⃝ in Figure 1). Further, to diversify the
types of attacks that can be identified, START further incorpo-
rates runtime monitoring and verification over telemetry and
instrumentation, described next.

IV. RUNTIME MONITORING AND VERIFICATION

Having produced a hardened binary, START now begins
the RAS mission (Step 2⃝ in Figure 1). START implements
continuous runtime monitoring to identify, and analyze, pos-
sible attacks over the course of system operation (Step 3⃝
in Figure 1). This process identifies anomalous behavior by
monitoring observables from the software and I/O layers of the
RAS, and verifies a priori modeled mission-specific constraints
that define a successful operating envelope for the system and
a given mission. This process aims to reduce the uncertainty
that a mission-operator may have the device’s operation, and
also raise the level of trust that an operator should have in a
device and mission [62].

Our method for assessing trusted operation is organized
into two focus areas with considerations for (1) the vehicle’s
locomotion through physical space and across time, assessed
by examining device telemetry (Section IV-A) and (2) the
execution behavior and states of onboard software, tracked
via instrumentation (Section IV-B).

A. Telemetry Assessment

In general, mission success for a UAV like our target
system is defined by timely and accurate autonomous traversal
through a set of waypoints defined in the mission plan. START
implements a runtime telemetry analysis toolkit for modeling
and cross-checking waypoint constraints that are indicative
of successful and expected mission traversal. Each waypoint
constraint embodies statistical conditions (values or ranges)



that are both likely to be observed during a successful mission
and highly unlikely to be observed during a failed mission or a
flawed controller execution. At runtime, START verifies these
constraints by analyzing a stream of telemetry from the UAV,
and reports anomalies to the repair module.

We model how the vehicle should approach individual
waypoints, align itself with the next waypoint and exit the
current waypoint. by measuring positional information such as
latitude, longitude, altitude, heading and speed; controller pa-
rameters like throttle set-points; and resource state information
(e.g., battery voltage) during software-in-the-loop simulations.
The models are then constructed via standard statistical learn-
ing methods over telemetry from successful and failed training
runs, along with compensation weightings for unmeasurables
(e.g., tailwind effect). The mission constraints are thus checked
by the ground control station at runtime by cross-checking
reported telemetry data. By only examining already emitted
telemetry, locomotion verification adds no overhead to the
device’s runtime.

Consequently, locomotion verification can quickly detect
and signal the occurrence of suspect behaviors, for example,
when the vehicle has trouble aligning with the next waypoint,
when it is moving too fast or too slow, or when it is too far
from the waypoint for meaningful payload sensor or actuation
operations like taking a picture or video. These early warnings
can be difficult to visually discern at a distance.

B. Internal Monitoring via Instrumentation

Monitoring telemetry alone is not always sufficient because
reported values do not guarantee execution integrity of the
onboard software and telemetry output. Failures or software
overrun by an adversary can emit spurious or malicious
telemetry, masking underlying corrupted values. To address
this concern, we further execution observables by instrument-
ing and monitoring a small set of mission-critical variables
and function calls in the vehicle controller (i.e., ArduPilot).

As the first step in our approach, we manually examine
the vehicle controller software to identify variables and func-
tion calls that are vital to mission success (e.g., handling
parameters, sending and receiving communications, handling
positional information). We then add source-level instrumen-
tation to these areas of the program and collect representative
execution data via simulation. Next, we manually post-process
the call graph and data values to identify the structure and
associations of regular tasks and ranges of values for data
that support I/O. Using this information, we insert constraint
checking code code as either scheduled tasks or inline mod-
ifications to low-rate task threads of the existing flight stack
code. This is also a manual step which requires an expert to
minimize the real-time overhead of instrumentation. Finally, at
runtime, verification occurs on-board the device and only emits
a signal to the repair module if a trust violation is detected. It is
technically possible that a clever attacker can bypass or disable
the scheduled tasks or instrumentation. However, we argue that
the risk is minimal for embedded platforms (e.g., ArduPilot),
because it requires an attacker to modify onboard software

with new logic through a very small C2 channel—that is, it
would produce a highly visible and privileged operation or
require physical access. This risk can be mitigated by moving
monitoring to a separate, trusted co-processor.

V. AUTOMATED REPAIR OF DETECTED VULNERABILITIES

Given an identified attack produced in Step 4⃝ of Figure 1
(detected by either binary hardening or runtime monitoring),
START aims to transform the running program to repair the
underlying vulnerability. We thus adapt a heuristic program
repair [47] paradigm to identify a suitable source-level patch
that allows the system to recover from the attack in Step 5⃝. At
a high level, heuristic program repair assumes a program and
a set of passing and failing test cases, where the failing test
cases correspond to the bug to be repaired. These techniques
aim to identify (typically small) edits to the input program
that cause it to pass all tests. Broadly speaking, a typical
repair process consists of a combination of fault localization,
to identify potentially-faulty locations to be edited; patch
generation, which instantiates candidate repair templates into
candidate patches; and patch validation for sampling and
assessing generated patches.

To automatically repair the RAS controller in response
to attacks, START adapts Darjeeling, an existing language-
agnostic framework for search-based program repair,5 to safely
and efficiently repair an embedded system. Below, we describe
each of the stages of our repair process, shown in Figure 3.

A. Attack Reproduction and Fault Localization

Repair begins when either the runtime monitor or hardened
binary informs the repair module of an attack. The repair mod-
ule uses data from the mission logs, including the sequence of
commands executed by the vehicle, to construct an executable
test that safely recreates the attack in simulation.

Given these inputs, the repair module uses a coverage
analysis to determine the source code lines that were executed
during the attack, and combines that information with its
existing coverage information for its regression test (a nominal
simulated execution of the predetermined mission without
the attack) to determine the likely location of the fault via
spectrum-based fault localization [43], [61].

B. Patch Generation

After determining suspicious areas of the program, a set
of candidate patches are generated at those locations by
applying a heuristic set of repair operators. We use the same
statement-level repair operators as GenProg [46], AE [80], and
RSRepair [80], and others. These operators are intended to
be generic enough to fix arbitrary bugs: Statements may be
deleted, swapped, replaced, or appended, where compatible
statements from the same file are used as ingredients when
replacing and appending.

5https://github.com/squaresLab/Darjeeling

https://github.com/squaresLab/Darjeeling
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C. Safe Patch Evaluation

Finally, the repair module exhaustively searches for a plau-
sible repair, which causes the program to pass all tests, includ-
ing the existing test suite and the recreated attack. To decrease
the cost of evaluation, we abort the evaluation of a candidate
patch on its first test failure and uses test prioritization to
reduce the cost of rejecting patches. The evaluation process
continues until a resource limit is reached (e.g., wall-clock
time) or a human operator signals that a plausible patch has
passed its trust evaluation (Section V-E).

Safety is particularly important in this domain, to ensure that
the execution of arbitrary code introduced by candidate patches
does not interfere with the safe operation of the vehicle. To
prevent such interference with minimal compromise to effi-
ciency, we use containerization to evaluate candidate patches
within a sandboxed simulated environment.

D. Efficiency

Efficiency is a paramount concern in this context. Efficiency
is required to ensure that an acceptable repair is found in
a timely manner, before the battery is depleted or failure of
the mission. Furthermore, the repair process must run on an
embedded platform with minimal resources and no connection
to the internet. To allow START to rapidly respond to attacks,
we perform the following:

• We lift parts of the repair process, including a coverage
analysis of the nominal mission execution (without the
attack), container preparation, and a set of static analyses,
to an offline preprocessing step. This stage (or parts of
it) is executed each time the source code or configuration
for the vehicle is changed before the start of a mission.

• We use a Clang-based plugin to pre-compute a set of
static analyses for the program, and build a database of
donor code snippets. We then use the results of these
analyses during repair to identify and prune redundant
program transformations [80].

• To reduce the cost of evaluating candidate patches by sev-
eral orders of magnitude (measured by time), we combine
low-fidelity simulation and clock acceleration. Motivated
by the recent finding [76] that many robotics failures
do not rely on complex environmental conditions and
can be reproduced in a low-fidelity simulation, we use a
lightweight software-in-the-loop (SITL) simulator. Using
a lightweight simulator reduces compute and memory
usage, and allows multiple candidate patches to be safely
evaluated in parallel using separate containers. Addition-
ally, accelerating the simulated clock further decreases
the time taken to evaluate a candidate patch.

E. Trust

Heuristic program repair can (and does, in this context)
produce numerous plausible patches that defeat the immediate
attack and allow the mission to continue. However, some
may introduce unintended side effects that are not surfaced
during patch evaluation (i.e., patches are not guaranteed to be
optimal). Without additional test cases, it is difficult to measure
and ensure patch quality [72].

To achieve both trust and resilience, we temporarily deploy
the first plausible patch to ensure mission continuity while
we present alternative patches to the developers for review.
Since our approach can produce dozens of patches within a
short period of time, manually reviewing each of them places
a large burden on the developer. Our approach exploits a
popular invariant detection tool, Daikon [22], to considerably
reduce this manual effort by partitioning patches into a smaller
number of classes based on their run-time behavior.

Specifically, we collect trace data from executions of both
the original and patched programs. We then use Daikon to
infer likely invariants, in the form of function pre- and post-
conditions, for each of these alternatives.

VI. EVALUATION

A primary contribution of this work is the unified evaluation
of a combination of component techniques in the context



TABLE I: Summary of end-to-end evaluation scenarios and
results. Bin, Mon, and Rep denote our binary hardening,
runtime monitoring, and repair components. “Some” indicates
that the attack was defeated in at least one, but not all, runs;
“All” indicates that the attack was defeated in all runs.

# Scenario Description Bin Mon Rep

1 Use after free All All All
2 Format string: Information Leak All
3 Format string: Crash All All
4 Stack-based buffer overflow: GCS All All All
5 Heap-based buffer overflow: GCS All All All
6 Stack-based buffer overflow: MAVLink All All All
7 Heap-based buffer overflow: MAVLink All All
8 x86 code injection All All
9 Infinite loop All All

10 Segmentation fault All All All
11 Mathematical logic bug Some All Some
12 Denial of Service (DoS) All
13 Integer error All All All
14 Floating point exception All All All

of uncrewed autonomous vehicles. We evaluate START in
two parts. First, we use an autonomous vehicle simulator
to help develop indicative end-to-end cyber attack scenarios,
focusing on the types of cyber attacks our system can prevent
and recover from (Section VI-A). Second, we individually
measure the runtime performance overhead incurred by each of
the binary transformation (Section VI-B), intrusion detection
(Section VI-C), and automated repair (Section VI-D).

A. End-to-end Evaluation

To assess the effectiveness of START, a Red Team seeded
14 unique vulnerablities, listed in Table I, into our case study
system together and created accompanying attack scenarios to
exploit each vulnerability in software-in-the-loop simulation.

Each vulnerable scenario is coupled with a MAVLink
packet that remotely triggers the vulnerability during SITL
execution against a predefined mission, which is a series
of predefined waypoints. We evaluated these attacks within
a virtualized environment to parallelize as many scenario
executions as possible. We ran the virtualized hosts on a
server configured with vSphere ESXi 6.0 and hosting 14
Ubuntu 16.04 virtualized hosts concurrently, each enumerating
all subsets of defenses for end-to-end evaluation. This virtual
infrastructure allowed for the enumeration of all scenarios with
demonstrative vulnerabilities within the SITL environment to
determine whether the specific vulnerability under evaluation
is (1) detected, (2) repaired, and (3) results in mission success.
Each scenario was repeated ten times to identify any non-
determinism and measure reliability.

Table I shows results. We find that: Binary hardening detects
or mitigates (i.e., the vulnerability no longer applies to the
transformed binary) the attack in 8 out of 14 scenarios,
Runtime monitoring detects the attack for all 14 scenarios. We
are able to automatically repair the underlying vulnerability in
11 scenarios. In total, START is able to defeat the attack and
successfully complete the mission for 12 of the 14 scenarios.

B. Binary Hardening Performance

In the interest of generalizability, we evaluated the overhead
of the Zipr baseline platform. While it might be tempting to
evaluate the overhead on the actual UAV software, accurately
benchmarking it is difficult. The UAV software spends much of
its time idle, and thus timing is not a practical way to measure
overhead. Further, the software is not prepacked with represen-
tative inputs, making any attempt to benchmark it inherently
bias by its input selection. Thus, to help measure overheads,
we leverage the SPEC CPU2006 benchmark suite [73], a suite
containing a wide variety of real-world programs written in
C, C++ and Fortran. The SPEC benchmarks, while older and
desktop oriented, include many programs that have made it
onto UAV software stacks, such as the bzip2 and perlbmk pro-
grams. Further, the suite contains performance and correctness
tests which we can leverage for unbiased results.

We compiled the binaries using gcc, g++, and gfortran
version 4.8.4 with -O2 optimization level. Note that we
exclude dealII from the benchmark as it does not build
correctly at any optimization level, and we compile perl and
wrf at a lower optimization level to ensure that the program
works correctly before we apply any rewriting.

The transformed binaries successfully pass their associated
regression tests. Figure 4 provides Zipr’s baseline (i.e., only
the BILR transformation enabled) performance and file size
overhead results normalized to the original binaries (i.e.,
less than 1.0 indicates speedup/space decrease and greater
than 1.0 indicates slowdown/size increase). On average, Zipr
incurs performance and filesize overheads of 3% and 30%,
respectively.

Most transformations add effectively no or very minimal
performance or file size overheads, namely SLX, HLX and
GLX. The overhead implications of BinArt depend on how
heavily the relevant functions are used, but for our use case,
we observed no noticeable difference in performance in the
UAV control software. SCFI adds the most notable overhead,
averaging approximately 10% slowdown. Thus, we feel that
START’s binary hardening approach provides a low-overhead
technique suitable for hardening a safety-critical UAV control
software stack.

C. Runtime Monitoring Performance

In this section, we describe the performance of our run-
time monitoring-based intrusion detection system, in terms
of its telemetry-based locomotion verification and controller
software instrumentation and monitoring.

To evaluate the overhead of START’s telemetry checking,
we measured CPU and memory usage of the ground control
system (GCS) across 11 back-to-back simulated mission ex-
ecutions on a four-core, hyperthreaded Intel processor with
32 GB of memory (a style of machine commonly used as a
GCS). Across those runs, we observed a steady state CPU
and memory utilization of 2% and 1% respectively. That is,
the runtime overheads of telemetry checking were negligible.

We also performs on-board runtime monitoring and periodic
verification of the controller state via manual software in-
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Fig. 4: Performance and file size overhead incurred by Zipr on SPEC CPU2006 Benchmarks. Results are normalized against
native execution speed and original binary filesize.

TABLE II: Instrumentation overhead for verifying access to
flight parameters.

Minimum Maximum Spread Average
15µs 252µs 237µs 33µs

strumentation (see Section IV). Table II summarizes profiling
results that examine the overhead and spread for periodic
verification of ArduPilot parameters. To gather these mea-
surements, 80 controller parameters were periodically cross-
checked against their boot-time values by a separately sched-
uled verification task. The cross-checking task is scheduled at
50 ms and compares a block of read-only memory containing
boot-time parameters against dynamically configurable values
on the controller.

Across thousands of timed samples, we observed the min-
imum, maximum, and average latencies shown in Table II.
In practice, the average overhead of 33 µs has no visible
effect on a live device at runtime. While the listed overhead is
excellent, it is narrowly focused on one type to state check at a
certain size of data. Logically, such checks may be extended to
support verification where the target data size of the check is
small enough to fit in a 50 ms window with similar results, e.g.,
examining waypoint mission plans or checksumming select
blocks of memory.

In the Red Team exercises, we complemented the task-based
approach described above with a strict form of embedded
logical assertion to guard against invalid modification of
waypoint settings. In this configuration, a single reference
counter was “woven” around the expected access pattern to
modify mutable state (e.g., an operator sends a mission plan
update message), and a pre-condition check was set at the
point of receiving the command and a post-condition check
was used to unlocked access to the waypoint update operation

assuming the precondition was met. In terms of overhead, this
approach introduces a single global variable and two basic
blocks to control access to the waypoint state. Overhead during
such an execution is negligible.

In terms of network overhead stemming from periodic ver-
ification of execution behavior and runtime states of onboard
software, runtime monitoring introduces a single periodic and
fixed-size MAVLink message as part of the trust verification
process. This message is reported every 50 ms, and for most of
the time, serves only as a heartbeat indicating that the monitor
is capable of reporting. In the case that a trust violations needs
to be reported, select flags are set within the message, but the
message size does not increase, thus keeping overhead low.

Finally, in terms of quantifying the instrumentation needed
to support runtime verification, our experience is that the actual
amount of code inserted is minimal (e.g., storing a set of
values at boot and periodic condition checking, computing
MD5 checksums, etc.). However, the real overhead is the
expert analysis of the controller software that is needed to
identify high-value low-overhead instrumentation points.

D. Automated Program Repair Performance

We measured the effectiveness of our repair approach across
eight Red Team bug scenarios in terms of (a) the wall-clock
time taken to find the first patch that defeats the attack, and (b)
the total number of patches found within a 15-minute window,
shown in Table III. Together, these metrics tell us whether
the repair module allows the vehicle to resume its mission
within a reasonable period of time (before the battery dies),
and give us insight into the number of alternative patches that
are presented as long-term options to the developers. Across all
of the repaired scenarios, the median time taken by the search
to discover a patch is 72 seconds. For all scenarios, repair
was able to discover multiple acceptable patches within the



TABLE III: A summary of repair performance metrics. Vul-
nerability describes the type of vulnerability that is exploited
by each scenario. TFP gives the time taken to discover the
first acceptable patch. # Patches specifies the total number of
acceptable patches that were found within the time limit.

Scenario Vulnerability TFP (secs.) # Patches

1 Use after free 38 17
5 Heap overflow 98 10
6 Stack overflow 65 18
9 Infinite loop 79 3
10 Seg. fault 40 6
11 Logic 201 6
13 Integer error 35 17
14 Floating point exception 297 6

TABLE IV: A breakdown of the time spent on each stage of
the repair process.

Step Duration (s)

Docker 120
Static Analysis 200
Test Suite Coverage 35
Fault Localization 40
Search 72
Recompilation 60

allocated time limit: the median number of patches produced
is 8.

Table IV presents a breakdown of the end-to-end time taken
to discover an acceptable repair. Both the online and offline
steps were performed on the same machine, a Ubuntu 18.04
LTS system with 64GB RAM, an AMD2990WX with 32 cores
at 4.2GHz, and 1 TB of NVMe SSD storage. The cost of the
online steps is directly linked to the simulation speedup factor
that is used: using a larger speedup factor allows the bug to be
localized faster and increases the number of candidate patches
that can be evaluated within the given time frame.

Patch quality: Although we were able to find a plausible
repair for each bug scenario within 15 minutes, not all of
these repairs are equally desirable. To illustrate, we examine
two such undesirable patches.

Figure 5 provides an example of a low-quality patch for
Scenario 5, a heap buffer overflow in the code responsible for
handling parameter requests. The vulnerability is exploited by
the attacker by issuing a request to set the value of a non-
existent parameter during the mission. The low-quality patch
resolves the vulnerability by indirectly disabling the vehicle’s
ability to respond to parameter modification requests. Since
the exploit is not triggered, all of the test cases pass and the
patch is accepted. Although this patch prevents the exploit, it
may impede the completion of the mission.

Figure 6 provides an example of an undesirable patch for
Scenario 13. This scenario contains a divide-by-zero vul-
nerability that is triggered by sending a navigation request
with certain parameters to the vehicle. The example patch
addresses the vulnerability by removing the statement at which
the divide-by-zero error occurs. The removed statement is

void GCS_MAVLINK::handle_param_set(
mavlink_message_t *msg)

{
mavlink_param_set_t packet;

- mavlink_msg_param_set_decode(msg, &packet);
enum ap_var_type var_type;

Fig. 5: An example of a low-quality patch that was discovered
for Scenario 5.

d = d - 1;
- e = c / d;
+ this->send_message(MSG_EKF_STATUS_REPORT);

Fig. 6: An example of a patch for Scenario 13 that fixes the
bug (second line) while introducing undesired but otherwise
benign functionality (third line).

replaced with a donor statement taken from elsewhere in the
same file. The donor statement causes the program to send
an status report to the ground control station whenever the
attacker attempts to exploit the vulnerability. This unwanted,
albeit benign, change to the program is not rejected since the
program satisfies the oracle: all waypoints in the mission are
visited and the vehicle ends the mission in an expected state.
As long as the changes do not interfere with the completion
of the mission, the oracle will permit them.

Using our patch invariant analysis, we are able to reduce
the number of patches that are presented to the developer in
these scenarios by between 40 and 45%. By doing so, we
significantly reduce the burden of assessing patch quality and
finding an acceptable long-term patch that should be applied
to the vehicle.

The end-to-end process of computing an invariant set for a
given patch produced by the repair tool took approximately
three minutes using a single thread. This overhead is largely
due to the runtime overheads incurred by the instrumentation
necessary to collect execution traces. In practice, this process
can be parallelized by spreading candidate patches across
separate threads.

VII. RELATED WORK

Binary Analysis and Transformation: There are many
tools that can harden software. Compile-time and OS-enabled
load-time transforms can reliably transform software [13],
[1], [63]. Binary rewriting, both static and dynamic, can also
transform and protect software [70], [9], [53], [7], [34], [24].
However, understanding hardening transformations at various
times and comparing individual techniques is well-studied and
beyond the scope of this paper [33], [34], [60].

Instead, this paper focuses on a practical use for hardening
transformations in the context of RASs, and is thus distinct
from the vast body of prior work related to compiler-based
hardening and binary-rewriting issues. In essence, this work
is a practical application of the application information repos-
itory idea [81], where information collected by a static binary



rewriter is stored for run-time monitoring and automatic repair
when a fault is detected during a mission.

Runtime Monitoring and Verification: Prior works [25],
[18], [62], [11], [14], [65] have used models of vehicle
dynamics and input/output and software execution profiles of
UAV controllers to formulate the conditions to be verified at
runtime during deployment. These works have also shown that
select classes of violations (e.g., unplanned modifications to a
controller’s task scheduler) may be detected before any sign
of failure is visible to operator.

A wide variety of intrusion and anomaly detection systems
have also been proposed as a means of inferring and enforcing
runtime monitors for cyberphysical systems (e.g., [3], [4], [36],
[12], [41]). While many of these approaches infer monitors
that generalize across multiple missions, they often do so at
the cost of permitting a greater number of false positives. For
START, we exploit the fact that missions are predetermined to
build a reliable statistical model of the vehicle’s locomotion.
Given the negligble runtime overhead of our prototype im-
plementation, additional monitoring techniques (such as those
described above) could be added to START in the future to
further enhance its capacity to identify and explain attacks.

Program Repair: For our prototype implementation of
START, we devised a repair approach based on the GenProg,
AE, and RSRepair family of search-based repair tools [47],
[64], [80]. Many other search-based repair approaches have
been proposed with various repair operators [49], [45], [42],
algorithms [8], [16], [19], [77], and optimizations [29], [82],
[39]. Most of these approaches can be integrated into START’s
high-level framework and low-level infrastructure.

Beyond search-based repair, other approaches to automatic
program repair include semantics-based repair [56], [44],
[85], which typically uses symbolic execution to obtain a
specification for the repaired program before using program
synthesis to construct a patch that satisfies that specification,
and data-driven repair, which uses neural networks and statisti-
cal methods to generate and prioritize patches [10], [54], [48].
Techniques have also been proposed specifically for repairing
security vulnerabilities [28], [40].

In the interest of urgency and ensuring mission completion,
our approach applies the first plausible patch to the vehicle to
allow it to keep running. We then rely on a human operator
to address the problem of determining which patch should be
applied to the vehicle in the long-term. To reduce the burden
of inspecting multiple patches, we use an invariant analysis to
partition patches based on behavioral differences. A number
of other approaches to the problem of assessing and ensuring
patch quality have been proposed: For example, using antipat-
terns to exclude likely bad patches from consideration [74],
checking if the patched program crashes on additional inputs
generated via fuzzing [27], and measuring similarity between
the patched and original program on test outputs and execu-
tions [84]. These techniques could be incorporated into START
to automatically exclude certain patches from consideration
and to further reduce the burden of manual patch inspection.

VIII. CONCLUSION

Society’s growing interest in robotic and autonomous sys-
tems, combined with documented system vulnerabilities and
software failures, necessitates new solutions in system re-
siliency and trustworthiness. In this paper, we presented
START, a general framework for securing RASs by improving
resilience, vulnerability assessment, and trusted post-repair
operation. We combined techniques from binary analysis and
rewriting, machine learning, automated program repair, and
invariant detection to cooperatively detect and repair indicative
software security vulnerabilities in these systems.

To demonstrate START, we implemented our approach on
a simulated quadcopter and evaluated its ability to detect
and overcome attacks through a Red Team exercise. START’s
combined defenses allowed the vehicle to continue its mission
for 12 out of 14 scenarios. By applying lightweight hardening
transformations to the binary of our subject system, we are
able to either immediately defeat the attack (i.e., the attack
is no longer able to exploit the vulnerability) or otherwise
identify that an attack has occurred and allow the program
to safely terminate. For the 2 scenarios that we were unable
to defeat, our runtime monitor was still able to identify that
an attack was occurring, thereby allowing a human operator to
potentially respond. The runtime overheads imposed by binary
monitoring and runtime monitoring are minimal and, most
importantly, have no observable effect on the safe and timely
operation of the vehicle (e.g., missing deadlines).

By adapting existing search-based repair techniques, we are
able to produce a repair for 11 of the 14 scenarios. Due to
the hard time and resource limitations of operating on an
embedded device, we immediately apply the first plausible
patch discovered by repair to the vehicle. As a result of this
choice, certain non-essential functionality may be disabled as
part of the repair. While this outcome is less desirable than
directly patching the underlying vulnerability, it is nonetheless
valuable within our particular operating context as it renders
the attack inert and allows the mission to continue. To inform
the construction of a long-term solution to the vulnerability,
we allow the repair process to produce and present alternative
patch options to the developers. To reduce the burden of con-
sidering and comparing multiple plausible patches, we group
patches based on their behavioral differences as determined
by an analysis of their likely invariants.

While repairs were generated within a reasonable window
of time during our evaluation (less than 10 minutes), there
are opportunities to further reduce the time and resources
necessary to generate an effective repair, thereby allowing our
approach to be used in a wider variety of deployments. Most
notably, when an attack is detected by the runtime monitor or
the transformations applied to the binary, the repair module is
alerted but very few details about the attack are shared. A more
sophisticated approach may take inspiration from vulnerability
repair (e.g., ExtractFix [28] and Senx [40]) to use information
about the type of vulnerability and state of the execution (e.g.,
the program stack) to enhance the fault localization and inform



the construction of candidate patches.
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