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ABSTRACT

In software engineering, interruptions during tasks can have signif-

icant implications for productivity and well-being. While previous

studies have investigated the effect of interruptions on productivity,

to the best of our knowledge, no prior work has yet distinguished

the effect of different types of interruptions on software engineering

activities.

This study explores the impact of interruptions on software en-

gineering tasks, analyzing in-person and on-screen interruptions

with different levels of urgency and dominance. Participants com-

pleted code writing, code comprehension, and code review tasks

while experiencing interruptions. We collect physiological data

using the Empatica EmbracePlus wristband and self-perceived eval-

uations through surveys. Results show that on-screen interruptions

with high dominance of requester significantly increase time spent

on code comprehension. In-person and on-screen interruptions

combined significantly affect the time spent on code review, with

varied effects based on specific interruption combinations. Both

interruption type and task significantly influence stress measures,

with code comprehension and review tasks associated with lower

stress measures compared to code writing. Interestingly, in-person

interruptions present a positive impact on physiological measures,

indicating reduced stress measures. However, participants’ self-

perceived stress scores do not align with physiological data, with

higher stress reported during in-person interruptions despite lower

physiological stress measures. These findings shed light on and

emphasize the potential importance of considering the complex

relationship between interruptions, objective measures, and subjec-

tive experiences in software development. We discuss insights that

we hope can inform interruption management and implications on

stress among software engineers.

(ChatGPT was used to revise and shorten paragraphs in this manuscript.)

1 INTRODUCTION

Interruptions have been studied in many fields such as social sci-

ence, psychology, and cognitive science [14, 18, 38, 41, 56]. Many

have measured interruptions according to their negative effect as

a physical or emotional burden or difficulty. Interruptions lead

to more stress, higher frustration, time pressure, and effort when
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performing fundamental cognitive tasks [8, 42]. In the context of

software engineering, interruptions can have a significant impact

on developers’ perception of a good workday and their productiv-

ity [45, 46, 48], which affect their perceived happiness and work

satisfaction [27–29]. This implies that interruptions can potentially

trigger affective states in developers, which can subsequently influ-

ence their productivity, overall performance and satisfaction.

Software development involves common software engineering

activities including writing code, comprehending code, and review-

ing code [30]. Indeed, during a typical workday, approximately

one-fourth of a software developer’s time is dedicated to tasks

like reading, editing, navigating code, and other code-related ac-

tivities [46]. Amidst the significance of these code-related tasks,

developers often encounter interruptions as they perform them.

Logistic duties, such as attending to emails, planning, assisting

co-workers, and holding meetings, can divert their attention from

coding. Meyer et al. reported that the duration of uninterrupted

coding time significantly influence developers’ perceived quality

of the workday [45]. Consequently, interruptions may have a sub-

sequent impact on their productivity and job satisfaction. This

implies different types of interruptions might have varying impact

on programmers’ productivity.

To better understand the impact of interruptions, we designed

an IRB-approved human study focused on two common types of

interruptions: on-screen and in-person. We design on-screen inter-

ruptions following commonly-encountered interruptions during

workdays like email notifications [9, 19] and, more recently, adver-

tisement pop-ups on websites like StackOverflow and Quora. We

also design in-person interruptions to reflect amanager or colleague

discussing work.

Notably, the COVID-19 pandemic has prompted a significant

shift in work patterns, with 35.2% of the workforce working entirely

from home in May 2020 [11]. This shift may lead to an increase in

interruptions during work due to the added complexity of coordi-

nating activities virtually [50]. Indeed, Leroy et al. found a large

increase in interruptions since-COVID, with women reporting a

greater increase in interruptions [40].

Understanding the effects of interruptions requires a multidis-

ciplinary approach that considers various factors such as the type

of interruption, individual differences in attention and response to

interruptions, and the context of the software engineering activity.

Some interruptions may be more disruptive than others depending

on their source and urgency. For instance, a notification from a

messaging app might be less disruptive than a phone call from a

manager. Furthermore, the type of software engineering activity

being performed can affect the impact of interruptions. For instance,

This work is licensed under a Creative Commons Attribution International 4.0 License.
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an interruption during code review might be less disruptive than

an interruption when writing code. Individual factors such as at-

tention span, cognitive load, and experience can also influence how

interruptions affect software engineers. Some developers may be

more easily distracted and have a harder time resuming their work

after an interruption, while others may be better at multitasking

and able to handle interruptions more efficiently. To fully under-

stand the impact of interruptions on software engineers, we take

a comprehensive approach that considers the various factors at

play. In doing so, we hope to develop interventions and strategies

to mitigate the negative effects of interruptions and promote more

productive and healthy work environments for software engineers.

In this paper, we investigate the influences of interruptions in

software engineering activities by analyzing the productivity and

the quality of the work as well as relating them to physiological data

and affective states. In particular, we are interested in the following

three research questions:

RQ1: What is the effect of different interruptions on developers’

performance across different software engineering tasks?

RQ2: What is the effect of different interruptions on stress mea-

sures across different software engineering tasks?

RQ3: Is there a correlation between objective measures of devel-

opers’ physiological states and their self-reported feelings

for different interruptions and tasks?

We perform a controlled human study with 20 participants. In

this study, we invite participants to complete a pre-survey followed

by a 2-hour in-person session, during which physiological measures

were recorded through Empatica EmbracePlus wristband1. Partici-

pants complete three self-paced, indicative software engineering

tasks—code writing, code comprehension, and code review—with

the presence of interruptions.

In summary, we note the following findings from our study:

• On-screen interruptions with high dominance of requester

notably increase the time spent on code comprehension prob-

lems. Moreover, the combined effect of in-person and on-

screen interruptions significantly influences the time spent

during the code review process.

• Interruptions during code comprehension and code review

tasks are associated with higher physiological measures com-

pared to the code writing task. In-person interruptions lead

to an increase in physiological measures.

• Participants’ self-perceived stress measures exhibit a contra-

diction with the objective physiological data.

All the study materials, code and de-identified data are available at

https://doi.org/10.6084/m9.figshare.24944568.v2.

2 RELATEDWORK

In this section, we discuss three lines of related work: (1) productiv-

ity in software engineering, (2) effect of interruption on developers’

performance, and (3) objective physiological sensors in software

engineering studies.

1https://www.empatica.com/embraceplus/

2.1 Productivity in Software Engineering

Productivity has been investigated in various software engineering

contexts. Murphy-Hill et al. conducted a study across three differ-

ent companies, using 48 questionnaire items as predictors to assess

which factors better predict developers’ self-rated productivity [48].

They found job enthusiasm, peer support for new ideas, useful feed-

back about job performance to be the top three factors. Although

“I have few interruptions or distractions while working” appears

as one of the predictors and is evident to cause disruptive effects,

the concept of interruptions is very general and broad. The specific

impact of interruptions on work can vary depending on the con-

text and the individual, and Murphy-Hill et al. did not distinguish

different types of interruptions. Furthermore, the study results are

completely based on self-reported measures.

Beller et al. compared self-reported productivity and its attributes

with time spent working on different applications by software en-

gineers at Microsoft [10]. They reported a gap between perceived

productivity and objective measures, and their final model was able

to explain less than half of the variance contained in self-reported

productivity when expressed as objective measures. Therefore, it is

important to build comprehensive method from both objective and

subjective productivity measures.

In this study, we encompass time-based metrics to evaluate ob-

jective productivity. We also assessed self-perceived productivity

in the survey at the conclusion of each software engineering task.

2.2 Effect of Interruptions on Developers’
Performance

Although interruptions are generally perceived as a factor that in-

fluences productivity, few studies have thoroughly investigated the

impact of different sources of interruptions in software engineering.

Abad et al. investigated the disruptiveness of task switching in

software engineering and requirements engineering through five

different studies [2–6]. They found no difference in the influence

of interruptions of different duration no matter what types of tasks

are being performed. They also performed a retrospective analysis

and found that self interruptions (voluntary task switching) are

more disruptive than external interruptions. While these investiga-

tions shed light on the general influence of self-interruptions and

external interruptions, they did not consider the impact of interrup-

tions on different software engineering tasks, nor do they consider

urgency or power dynamics associated with interruptions.

Our study takes a novel approach by analyzing the effects of

external interruptions, including in-person and on-screen interrup-

tions, on three essential software engineering tasks: code writing,

code comprehension, and code review. By exploring interruptions

within the context of these specific activities, we aim to provide a

deeper understanding of their influence on productivity and stress

measures among developers. Moreover, we carefully distinguish ex-

ternal interruptions and consider their urgency or power dynamics,

ensuring a comprehensive examination of their impact.

2.3 Objective Sensors in Software Engineering

Some studies in software engineering make use of objective phys-

iological measures such as eye-tracking, functional magnetic res-

onance imaging (fMRI), and smart wristbands to access objective
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measurement of physiological responses. Huang et al. used fMRI

and functional near-infrared spectroscopy (fNIRS) to understand

mental processes associated with data structure manipulation [33].

Similarly, Krueger et al. used fMRI to find the dissimilarity in prose

and code writing [37]. Later, Huang et al. also used eye-tracking

technology and fMRI to find the differences in code reviews con-

ducted by men and women [32].

Few studies used other objective physiological sensors. Müller et

al. relied on a combination of eye tracking tehnology, an Empatica

wristband, and an Electroencephalography (EEG) headband to clas-

sify developers’ emotions and perceived progress during software

development change tasks [47]. Girardi et al. used the Empatica E4

wristband to measure the electrodermal activity and heart activity

to recognize developers’ emotions during programming [25].

In our research, we build upon these previous studies by using

the Empatica EmbracePlus wristband to obtain objective measure-

ments of developers’ affective states during software engineering

tasks. By capturing physiological data such as Heart Rate Vari-

ability (HRV), we aim to gain a comprehensive understanding of

how interruptions and task types influence developers’ stress re-

sponses. Furthermore, we compare these objective measurements

with participants’ self-perceived assessments, providing a nuanced

examination of the interplay between subjective experiences and

physiological reactions in the software development context.

3 METHOD

In this section, we present a detailed description of the experi-

mental design and procedures used to investigate the impact of

interruptions on software engineering tasks. With the approval

of the Institutional Review Board (IRB), we specifically recruited

individuals from Vanderbilt University who are either majoring

or minoring in Computer Science to complete tasks in C++. Fur-

thermore, we conducted a pre-screening process to confirm that

participants possessed the necessary basic knowledge of C++ to suc-

cessfully complete all tasks in our study. Specifically, participants

are required to have completed the university’s data structures

course in C++ or an equivalent course as a prerequisite for partici-

pating in the study. The data structures course corresponds to CS2

in the ACM Computing Curricula. Before the study, participants

complete a pre-survey that asks them about basic demographic

information, the Social Interaction Anxiety Scale (SIAS), and the

Cognitive Failures Questionnaire (CFQ) (Section 3.2). Participants

who complete the pre-survey come to a lab designed to replicate an

office environment and complete an assessment on the lab computer

consisting of indicative software development tasks (Section 3.3).

As participants complete each task, we deploy (1) in-person inter-

ruptions in which a confederate goes into the lab to ask innocuous

questions of the participant, and (2) on-screen interruptions such as

notification pop-ups (Section 3.4). During the study, participants

wear an Empatica EmbracePlus Wristband that collects their physi-

ological data (Section 3.5). After completing each task, participants

complete a post-task survey (Section 3.6). Participants do not know

interruptions are designed and intentional until the debriefing ses-

sion after the study. We discuss each step below in more detail.

3.1 Recruitment

We recruited participants by sending emails to departmental mail-

ing lists and by giving 2-minute presentations at the start of various

computer science classes with instructor permission. Potential par-

ticipants enrolled by sending an email to the study coordinator, at

which point they were given the pre-survey materials to complete.

Participant identities were not stored in any research data, and was

only used to track compensation of participants. Participants were

compensated $40 for their time upon completing the study.

3.2 Pre-survey

Before participants come to the lab and complete the software

engineering task, they complete a pre-survey electronically. Upon

completion of the pre-survey, the participant is scheduled for a two-

hour block for the in-person portion of the study. We collect several

pieces of information about the background of the participant as

described below.

Basic Information. The pre-survey gathers information related

to basic demographic details (i.e., age, gender), English proficiency,

and programming experience. We require participants to be fluent

in English because the instructions and survey instruments are all

in English. Programming experience is measured by asking par-

ticipants to indicate the number of years they have been engaged

in programming activities [22]. We also did not proceed with par-

ticipants unless they completed the data structures course (or an

equivalent) at the university.

Psychological Measures. To account for effects associated with

mental health, we employed the Social Interaction Anxiety Scale

(SIAS) [43] to establish a baseline anxiety level. The SIAS survey

consists of 20 questions, each rated from 0 to 4, resulting in total

scores ranging from 0 to 80. Generally, higher SIAS scores indicate

elevated anxiety and fears related to general social interactions. In

particular, when facing in-person interruptions involving face-to-

face interactions, individuals with social interaction anxiety might

experience greater challenges in effectively managing the inter-

ruptions. They may interpret interruptions as more threatening

or disruptive, leading to heightened stress levels. Our participant

pool is diverse, encompassing a range of SIAS scores as shown in

Figure 4, allowing us to explore the potential impact of individual

mental health on developers’ responses to interruptions. This un-

derstanding can inform the development of targeted interventions

and support mechanisms for developers in software development

environments. To assess the frequency with which participants

experienced cognitive failures, we included the Cognitive Failures

Questionnaire (CFQ) [12]. The CFQ measurement contain 25 ques-

tions rated from 0 to 4, yielding a score from 0 to 100. Scores on the

scale predict episodes of absent-mindedness, including slow perfor-

mance on focused attention tasks, work accidents, and forgetting to

save one’s data on the computer. All participants scored less than

60, which suggests that, on average, they experienced relatively

fewer cognitive failures or lapses in their cognitive functioning.

3.3 Software Engineering Assessment

After completing the pre-survey, participants scheduled a 2-hour

in-person session. During their 2-hour session, the participant com-

pletes three different software tasks in an office setting with a lab
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computer that collects their responses. The assessment contains (1)

a code writing (programming) task, (2) a code comprehension task,

and (3) a code review task, all implemented in C++.

Prior to commencing the first task, participants were instructed

to relax and view a soothing video featuring natural scenes, lasting

two minutes and 40 seconds, following the methodology of Fritz

et al.’s study [24]. This approach was chosen as it has been demon-

strated to effectively return participants’ physiological features to

a baseline level after approximately one minute.

We implemented the assessment instrument using Python Flask.

Participants view a web interface containing relevant elements for

completing each task, such as text entry fields with C++ syntax

highlighting, buttons for building and executing code against a

held-out test suite, and buttons for accepting or rejecting proposed

code changes. We describe each task below.

3.3.1 Code Writing Task. In the code writing task, the participant

is asked to program a Tic-Tac-Toe game in C++ that involves a

single file implementation with about 137 lines of code to read,

which includes pre-defined functions and structures and instruc-

tions. The participant had to complete support for a two-player

3x3 Tic-Tac-Toe game in which players take turns specifying their

symbols on the board and validating when a player formed a hori-

zontal, vertical, or diagonal sequence of their symbol. We showed a

video introducing the requirements of the Tic-Tac-Toe game before

starting.

We created a web-based Integrated Development Environment

(IDE) similar to platforms such as LeetCode [39]. We provided

enough structure to the participant that they only needed to com-

plete specific functions defined in the starter code according to the

requirements they were given. For example, participants had to im-

plement logic to evaluate the board state to determine if a winning

condition had been met. This IDE enabled users to submit their

code by clicking a button — the browser would submit the code

to our server, which would automatically build and evaluate their

code against a held-out test suite of 5 test cases. Participants were

shown the output of the test cases so that they could refine their

solution. For expediency and to encourage thoughtful task comple-

tion, we limited participants to 5 submissions total. We stored all

submissions and test outputs, as well as every individual keystroke

made by the participant.

3.3.2 Code Comprehension Task. In the code comprehension task,

participants were presented with three sets of C++ code snippets,

each corresponding to a LeetCode problem. The problems were

carefully selected to cover a diverse range of important topics in soft-

ware engineering and were categorized as either easy or medium

difficulty based on LeetCode’s classification [39]. The order of the

code snippets was randomized for each participant to minimize

any potential order effects. Table 1 summarizes the three LeetCode

problems selected for this task. To gauge the difficulty level of each

problem, we considered the acceptance rate, which represents the

percentage of LeetCode submissions that pass all the test cases for a

particular problem. LeetCode problems with lower acceptance rates

are generally considered more challenging, as they may require

a deeper understanding of the problem and a more sophisticated

solution. The acceptance rate served as an approximation for the

difficulty level of each problem.

Table 1: Description of code comprehension problems [39].

Problem Titles Difficulty Acceptance % Related Topics

Single Number Easy 70.9% Array,
Bit Manipulation

Majority Element Easy 63.9% Array, Hash Table,
Divide and Conquer,
Sorting, Counting

Subarray Sum Equals K Medium 43.6% Array, Hash Table,
Prefix Sum

The participants are shown two different approaches to solving

the same LeetCode-style coding problem. To assess their compre-

hension, participants were required to answer four questions related

to each pair of approaches: two questions related to expected output

given a specific input, and two qustions focused on time complexity

(i.e., Big-O notation) of the provided approaches. Participants had

the opportunity to submit their answers up to 5 times for expedi-

ency and to accommodate issues with formatting (e.g., specifying

Big-O notation in a brower text input field is nontrivial). After each

submission, the number of questions they answered correctly is dis-

played. An example of the questions that participants encountered

for a given problem is shown in Figure 1.

3.3.3 Code Review Task. The code review task contains two parts:

• First, participants are asked to write test cases for a C++

Adelson-Velsky and Landis (AVL) tree implementation in a

single C++ file of approximately 250 lines [7].

• Second, participant decidewhether to accept proposed changes

made to this AVL tree implementation. To ensure a clear un-

derstanding of the different rotations of AVL trees, we pro-

vided an introductory video on AVL trees before they started

the code review task.

First, participants write test cases to cover four different types of

AVL tree rotations (i.e., Left, Right, Left-Right, and Right-Left Rota-

tions [20]) and one edge case in which the same value is inserted

twice. Similar to the code writing task, participants use a web-based

IDE to write test cases as unit tests. We seeded defects in the AVL

tree implementation to contain logical errors that are corrected by

proposed changes described in the second part. Participants can

submit their test cases, which are evaluated with respect to line and

branch coverage over the given implementation. The coverage is

provided to the participant by showing whether each rotation type

or edge case was evaluated by their provided test suite. Participants

could submit their test cases up to five times.

Second, participants are informed that there are defects in the

provided AVL tree implementation, and must determine whether to

accept or reject proposed changes to the implementation. Sadoski

et al. [52] showed that many changes to source code made during

code reviews were relatively small in size, often modifying only a

single line of code. Thus, we show participants 7 different proposed

changes to the AVL tree implementation, each of which involved

4 lines of code or fewer. While two of these proposed changes

fix existing errors, the other five changes introduce new defects.

The combination of both fixes and the introduction of new defects

ensures a comprehensive evaluation of participants’ code review
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capabilities. Participants are required to evaluate each proposed

change and decide whether to accept it based on its impact on the

code’s correctness and functionality.

3.4 Interruptions

We implemented interruptions based on previous methods. Mc-

Farlane examines four methods for deciding when to interrupt

someone during multi-tasked computing, including immediate (re-

quiring an immediate user response), negotiated (user chooses

when to attend), mediated (an intelligent agent might determine

when best to interrupt) and scheduled (interruptions come at pre-

arranged time intervals) interruptions [44]. Those four methods

of interruptions are based on multiple complex factors such as the

urgency of the information being conveyed, the participant’s pref-

erence or availability, and the participant’s behavior and context.

We adapt McFarlane’s framework in designing interruptions of

software engineering tasks in a controlled setting.

In our study, we implement four types on-screen interruptions

(an example is shown in Figure 2) and two types in-person inter-

ruptions. We further adopt the Eisenhower decision matrix [35] to

categorize our interruption methods. Similar to the two dimensions

of Eisenhower decision matrix, this matrix evaluates interruptions

along two dimensions: urgency of request and dominance of requester.

Figure 3 depicts the estimated urgency of request and dominance

of requester for the six interruptions. These interruptions are de-

scribed in Table 2.

During the execution of the software engineering tasks, we ran-

domly show on-screen interruptions, labeled as On-screen 1–4,

which appeared randomly and in various orders throughout the

different tasks. On-screen 1 (Experiment Invitation) and On-screen

3 (Sum-up Meeting) were intentionally designed to exhibit a high

level of dominance from the requester, simulating messages from

the Principal Investigator (PI), while On-screen 2 (ML Ads) and

On-screen 4 (Post-survey Reminder) exhibit low dominance of the

requester. Additionally, On-screen 3 was crafted with a sense of

urgency, requiring participants to promptly fill out their availability.

Each on-screen interruption message consists of no more than 100

words. These design choices were made to approximate aspects of

real-life real-life situations where software engineers encounter

interruptions from authority figures or urgent requests.

Table 2: Description of interruption types used in this study.

Label Description of the Content

On-screen 1 A message claims the PI wants to invite the participant

to another experiment.

On-screen 2 An advertisement to invite the participant to a seminar.

On-screen 3 A message asking the participant to provide their avail-

ability for a follow-up meeting about the study.

On-screen 4 A reminder to fill out the post-task survey after the task.

In-person 1 Student confederate enters the room to check on the

participant.

In-person 2 Professor confederate enters the room to ask the partici-

pant about their availability to meet after the study.

In addition, we also consider in-person interruptions facilitated

by a confederate student and a professor. For In-person 1 (Student),

the confederate student, a 20-year old Asian female, played the role

of a peer entering the room to assess the participant’s progress

during the task (although all progress is stored and tracked on the

backend). For In-person 2 (PI), the confederate professor, a 34-year

old White male who is a faculty in the department, played the role

of an authority figure entering the room to ask the participant about

their availability to meet after completing the study. Participants

are aware of the confederate professor’s occupation as the confed-

erate introduces himself at the beginning of the interruption. Both

these In-person interruptions were intentionally designed with a

high sense of urgency, demanding immediate responses, but with a

varying degree of requester dominance (i.e., student vs. professor

confederate). To keep the consistent study design, the student and

professor confederate remain the same for all participants (see Sec-

tion 5.2 for discussions on limitations). The specific timing of their

entry into the room was also randomized to mimic unexpected

interruptions that engineers may encounter in their actual work

environments.

We note that participants experienced one to three interrup-

tions during each task, and we ensured that two interruptions did

not occur simultaneously. This approach aimed to approximate

aspects of real-life real-world interruptions, where engineers may

face multiple interruptions over time. Our design choices, incorpo-

rating both on-screen and in-person interruptions, were intended

to capture the diverse effects of interruptions from various sources

and contexts on participants’ software engineering activities. By

simulating these interruptions realistically, we aimed to create an

environment that closely resembles the challenges and distractions

software engineers may encounter during their day-to-day work.

3.5 Physiological Measures

Physiological measures such as electrodermal activity and heart-

related measures provide a objective way to measure each par-

ticipant’s emotional state and cognitive load [1, 26]. We use the

Empatica EmbracePlus Wristband to measure heart rate variability

(HRV) as it has been widely used in research to collect physiological

data [25, 51, 54, 62]. It is a medical-grade wearable device that offers

real-time physiological data acquisition, which we use to conduct in-

depth modeling, analysis and visualization. The wristband embeds

3-axis accelerometer, electrodermal activity, temperature and gyro-

scope sensors2. It is a non-invasive device worn like a wristwatch,

minimizing any discomfort during usage. However, participants

are informed of potential mild irritation due to prolonged contact

with the band material on the skin, as well as possible fatigue from

wearing the wristband. These risks are similar to those associated

with smartwatch devices. All data collected from the wristband was

stored in encrypted storage and de-identified from each participant.

3.6 Post-task Survey

During the study, participants complete three post-task surveys

interspersed after each task completion. We note that participants

were unaware that the interruptions were intentional during the

study. Therefore, in compliance with the IRB protocol, a debriefing

2https://www.empatica.com/embraceplus/
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Figure 1: Layout of the code comprehension task stimulus.

Each code snippet provided in this assessment consists of

fewer than 30 lines of code shown in a browser.

Figure 2: Layout of an on-screen interruption. The light gray

box depicts the pop-up that appears on the screen randomly

during the task, which can be dismissed by clicking the ‘OK’

button or providing the requested input.

session is conducted at the conclusion of the study to inform par-

ticipants about the purpose and design of the study, including the

intentional nature of the interruptions. Following the debriefing,

participants are asked to complete a final survey, which provides

them with an opportunity to reflect on their overall experience and

provide any additional feedback or comments.

3.6.1 Code Writing Survey. The first post-task survey is associated

with the tic-tac-toe writing task. We ask participants’ current affec-

tive states by adapting the Positive and Negative Affect Schedule

(PANAS) scale [61]. The PANAS scale consists of 20 items that are

rated on a scale of 1 to 5. These items are divided into two categories:

positive affect and negative affect, with 10 items in each category.

However, as the PANAS scale is commonly used to assess a person’s

affective state over a longer period, following previous studies, we

made necessary modifications to capture participants’ immediate

affective experiences during the task [15]: we asked them to select

the PANAS items that best described their current affective state

while working on the tic-tac-toe task. This adaptation allowed us to

capture participants’ current emotional state in response to the task

and any encountered interruptions. Additionally, to gain insights

into participants’ perceived productivity and level of distraction

or focus during the task, we included rating scales from 1 to 5 on

Information sent from
a dominant authority

Immediate response inquired
by a dominant authority

Information sent from a
non-dominant authority

Immediate response inquired
by a non-dominant authority

Urgency of request

Dominance of requester

On-screen 1
(experiment invitation)

On-screen 3
(Sum-up Meeting)

In-Person 2
(PI)

On-screen 2
(ML Ads)

On-screen 4
(Post-survey Reminder)

In-Person 1
(Student)

Figure 3: InterruptionMatrix Based on EisenhowerDecision

Matrix. This matrix evaluates interruptions along two di-

mensions: urgency of request and dominance of requester.

these factors. Open-ended questions were also included to gather

more detailed qualitative feedback, such as “What was the biggest

challenge you faced while implementing the tic-tac-toe task and

why?” These open-ended questions provided participants with an

opportunity to share their experiences, challenges, and perceptions

related to the task and the interruptions they encountered.

3.6.2 Code Comprehension Survey. After completing the code com-

prehension task, we asked PANAS scale items (as in the codewriting

task). We also asked participants to rate the difficulty of each prob-

lem on a scale of 1–100 using a slider element and to rank the

difficulty of the three problems.

3.6.3 Code Review Survey. After the code review task, we follow a

similar survey structure. Participants were asked to complete the

PANAS scale, and then to rate their productivity, distractedness,

and level of focus, each on a scale of 1 to 5, and provide feedback

through open-ended questions. They were also asked to rank the

difficulty for the 7 accept/reject changes questions.

3.6.4 Debriefing Survey. Finally, as participants learned that all

interruptions were purposeful, we asked them to rate the level of

distraction and level of stress caused by those intentional interrup-

tions. We also included open-ended questions such as “Other than

the distractions we designed on purpose, was there anything else

you found distracted?” to allow participants to provide feedback.

By including these post-task surveys, we aimed to gather com-

prehensive feedback and insights from participants regarding their

perceived affective states, task perceptions, and experiences during

each task in the study.

4 EVALUATION

In this section, we present a comprehensive analysis of the data

collected during our study on the impact of interruptions on de-

velopers’ performance and physiological measures in software en-

gineering tasks. Our participant pool comprised a group of 20 un-

dergraduate (n=17) and graduate (n=3) computer science students,

with 11 male and 9 female, ranging in age from 19 to 23 years.

To assess their social interaction anxiety levels, we employed the

Social Interaction Anxiety Scale (SIAS), the scores of which are
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Figure 4: Distribution of SIAS among all subjects. These

scores indicate the level of social interaction anxiety expe-

rienced by the participants, with higher scores indicating

a higher level of anxiety. The SIAS scores of our subjects

ranged from 20 to 53, with a mean of 35.35 (SD = 9.64).

distributed as depicted in Figure 4. The distribution aligns with pre-

vious studies on social anxiety among general engineering students

in colleges [16, 34]. We aim to address our research questions:

RQ1: What is the effect of different interruptions on developers’

performance across different software engineering tasks?

RQ2: What is the effect of different interruptions on stress

measures across different software engineering tasks?

RQ3: Is there a correlation between objective measures of de-

velopers’ physiological states and their self-reported feelings

for different interruptions and tasks?

4.1 Performance and Productivity

In this study, we first measure time spent on each task as an in-

dication of participant efficiency and productivity. Informally, a

developer who completes tasks within a shorter time frame may be

considered more productive than one who takes longer. When mea-

suring time spent on tasks, we exclude in-person interruption time

as participants are not able to work on the task during in-person

interruptions. Furthermore, relying solely on one metric can lead

to an incomplete understanding of productivity [23]. It is crucial

to use a combination of quantitative and qualitative measures to

obtain a well-rounded assessment of a developer’s productivity.

Therefore, we also assess their self-reported productivity through

post-task surveys, although no significant result was found. Below,

we discuss specific results of participant productivity with respect

to the Code Comprehension and Code Review tasks (Section 3.3).

Code Comprehension. There are three problems in code com-

prehension task as shown in Table 1. To investigate the effect of

different interruptions, we conducted a rigorous mixed-effects mod-

eling analysis. We first investigated the relationship between types

of interruptions and time spent on the problem. We specified that

there is individual variability in the baseline level of the time spent

among different participants. Subsequently, we employed linear

mixed-effects models to predict the time spent on the problem. The

model results suggest that On-screen 1 (Experiment Invitation) and

On-screen 3 (Sum-up Meeting) have a significant effect on time

spent. For problem with the occurrence of On-screen 1 (Experiment

Invitation), the expected difference of time spent on the problem

is 164.50 seconds (SE = ±72.82, 𝑝 = 0.028) compared to the time

spent on the problem without any interruption. For problem with

the occurrence of On-screen 3 (Sum-up Meeting), the expected

difference of time spent on the problem is 164.50 seconds (SE =

±62.90, 𝑝 = 0.0499) compared to the time spent on the problem

without any interruption. These findings conclusively demonstrate

that encountering these two types of interruptions, both with high

dominance of requester, led to a significant increase in the time

participants spent on the problem. For in-person interruptions, we

find no significant effect on time spent.

In addition to examining the impact of interruptions, we sought

to explore how the difficulty of the problems influences developers’

responses during the code comprehension task. To address this,

we performed separate ANOVA analyses for each problem, com-

paring the average time spent by participants when encountering

interruptions versus completing the problem without any interrup-

tion, while also accounting for individual differences. The outcomes

shown in Table 3 demonstrate that interruptions had a more sig-

nificant effect on simpler problems compared to their impact on

more complex ones. This observation suggests that the presence

of interruptions had a more pronounced influence on participants’

performance and time allocation for easier problems, while the

effect was relatively diminished for problems of higher difficulty.

Code Review. In the code review task, detailed in Section 3.3.3,

we introduced a combination of in-person and on-screen inter-

ruptions. To assess the impact of these interruptions on the time

spent during the code review, we employed a rigorous mixed-effects

ANOVA analysis. This allowed us to investigate the potential signif-

icance of different types of in-person and on-screen interruptions,

as well as their interaction. The results of the mixed-effects ANOVA

analysis indicated a significant interaction effect (𝑝 = 0.043) be-
tween in-person and on-screen interruptions on the time spent

during the code review task. Although the individual main effects

of in-person interruptions and on-screen interruptions were not

statistically significant on their own, their combined influence sig-

nificantly impacted the time spent during the code review process.

To understand the interaction, we conducted a post-hoc analysis,

focusing on pairwise comparisons between different combinations

of on-screen interruptions and in-person interruptions. The post

hoc analysis revealed compelling insights into the differences in es-

timated means for time spent on the task under various interruption

scenarios. When On-screen 2 (ML Ads) occurred in conjunction

with in-person interruptions, participants spent 1812.3 seconds less

Table 3: Differences in mean time spent by groups with mi-

nus without interruptions (seconds). The percentage of the

difference is shown in parentheses.

Problem Title Difference (𝑠) Standard Error 𝑝-value

Single Number 230.0 (142.9%) ±72.1 0.0053

Majority Element 89.5 (40.5%) ±93.5 0.3522

Subarray Sum Equals K 24.2 (9.3%) ±56.6 0.6747
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time (SE = ±711, 𝑝 = 0.027) on the task compared to scenarios with

no in-person interruptions. Conversely, without the presence of

in-person interruptions, participants spent 1575 seconds more time

(SE = ±487, 𝑝 = 0.0346) when encountering On-screen 2 (ML Ads)

compared to On-screen 4 (Post-survey Reminder).

These findings suggest that the interaction between in-person

and on-screen interruptions plays a significant role in influencing

the time spent during the code review task. The specific combina-

tions of interruptions have varying effects on the task duration,

indicating the complexity and nuanced impact of interruptions

on developers’ code review activities. By thoroughly examining

both in-person and on-screen interruptions in this mixed-effects

ANOVA analysis, we gain a comprehensive understanding of how

different interruptions interact to affect developers’ code review

performance.

Finding 1: Specific on-screen interruptions with high dominance

of requester significantly increase the time spent on code com-

prehension problems, and interruptions in general have a more

pronounced effect on time spent on simpler code comprehen-

sion problems compared to more complex ones. The combined

influence of in-person and on-screen interruptions significantly

impact the time spent during the code review process, and spe-

cific combinations of interruptions result in varying effects on

the task duration.

4.2 Heart Rate Variability and Stress Measures

Studies have shown the connection between heart rate variabil-

ity (HRV)’s time domain features and stress levels in healthy hu-

man participants [17, 60]. In particular, the short-term SDNN and

RMSSD have been found to exhibit significant changes in response

to stress [13, 21, 31, 36, 49, 55]. SDNN is the standard deviation

of Inter-Beat Intervals (IBIs) measured in milliseconds, where NN

means “normal” beats, i.e, removing abnormal or false beats. RMSSD

calculates the difference between successive inter-beat-intervals

(IBI) in milliseconds, squares these values, and takes the root of

the mean. Punita et al. [49] suggested that SDNN and RMSSD were

reduced with increased intensity of stress, and Sin et al. found that

individuals with more pronounced affective reactivity to stressors

had lower levels of SDNN and RMSSD [55]. We are interested in

examining the effect of types of interruptions on developers’ stress

measures and whether it varies among different types of software

engineering tasks. We thus estimated participants’ objective stress

measures using HRV and compared them with their self-reported

stress scores in the post-survey.

The participants’ physiological data was collected using an Em-

patica EmbracePlus wristband during our study. Specifically, we

focused on extracting time domain features of Heart Rate Variability

(HRV) from the collected data. To extract the time domain features,

we used hrvanalysis, a Python module specifically designed for

HRV analysis. We captured the 30-second window both before and

after each interruption that occurred during the assessment. The

30-second window measurement taken before the interruption was

designated as the baseline for subsequent comparisons. By estab-

lishing a baseline, we aimed to assess any changes or deviations in

physiological responses resulting from the interruptions.

First, we report the differences of SDNN and RMSSD for the mea-

surements before and after each interruption. We perform paired

t-tests with different types of interruptions and software engineer-

ing tasks. The results show that, in general, after an interruption,

the participant’s SDNN and RMSSD increase by 12.0 ms (SE = ±9.5,

𝑝 = 0.013) and 14.6 ms (SE = ±11.7, 𝑝 = 0.015), indicating a de-

crease in stress measures. Specifically, regardless of the type of

tasks being performed, In-person 1 (Student entering the room)

have a significant positive effect on RMSSD, causing RMSSD to

increase by 32.6 milliseconds (SE = ±28.9, 𝑝 = 0.029). The increase
in RMSSD indicates a decrease in stress measures.

To further investigate the impact of different interruptions, we

conducted a rigorous mixed-effects modeling analysis. Initially, we

performed an ANOVA analysis using random effects structures to

identify the best-fitting model to account for the inherent variabil-

ity in our data. We treat individual subjects as random effects. This

was achieved through the inclusion of random intercepts for tasks

and random slopes for subjects influenced by the types of tasks

they performed. After finalizing the random effects structure, we

proceeded to fit linear mixed-effects models aimed at predicting

SDNN and RMSSD. We consider the following two linear mixed

effects models to determine whether types of interruptions and

types of tasks can predict SDNN and RMSSD. By employing these

models, we aim to gain deeper insights into the complex relation-

ship between interruptions, software engineering tasks, and their

joint influence on the participants’ SDNN and RMSSD measures.

Model 1: Do types of interruptions predict SDNNandRMSSD?

The model results suggest that the in-person interruptions have a

significant impact on SDNN and RMSSD. For SDNN, the interrup-

tion “In-person 1” shows a statistically significant effect (𝑝 = 0.0098)
with an expected difference of 25.4 milliseconds (SE = ±9.7) com-

pared to the baseline measurements taken before the interruption

occurred. Similarly, the interruption “In-person 2” also has a statis-

tically significant effect (𝑝 = 0.0107) with an expected difference

of 23.9 milliseconds (SE = ±9.2) compared to the baseline measure-

ments. For RMSSD, The interruption “In-person 1” demonstrates

a statistically significant effect (𝑝 = 0.0045) with an expected dif-

ference of 34.8 milliseconds (SE = ±12.1) compared to the baseline

measurements taken before the interruption occurred. Addition-

ally, the interruption “In-person 2” has a statistically significant

effect (𝑝 = 0.0432) with an expected difference of 23.4milliseconds

(SE = ±11.5) compared to the baseline measurements. Remarkably,

both in-person interruptions are positive predictors, indicating that

when these interruptions occur, the developers’ SDNN and RMSSD

tend to increase, and their stress measures tend to decrease. This

suggests that the presence of students or the PI in the room may

have a beneficial effect on the developers’ physiological indicators,

potentially reducing stress levels.

Model 2: Do types of interruptions and types of software

engineering activities predict SDNN and RMSSD? The model

suggests that both the type of interruptions, specifically the two

in-person interruptions, and and the type of task have a significant

impact on RMSSD and SDNN. During interruptions, the expected

difference in SDNN compared to code writing task for code com-

prehension task is 25.0 milliseconds (SE = ±9.6, 𝑝 = 0.0027); The
expected difference in SDNN compared to code writing task for
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Figure 5: Self-perceived stress scores among all subjects. The

graph illustrates the distribution of self-rated stress scores,

ranging from 1 (least stressed) to 5 (most stressed).

code review task is 53.6 milliseconds (SE = ±7.5, 𝑝 = 4.8𝑒−7). The ex-
pected difference in RMSSD compared to code writing task for code

comprehension task is 23.9milliseconds (SE = ±9.4, 𝑝 = 0.0151);
the expected difference in RMSSD compared to code writing task

for code review task is 54.8 milliseconds (SE = ±10.2, 𝑝 = 2.52𝑒−5).
These results suggest that developers experience lower stress mea-

sures during interruptions when performing code comprehension

and code review tasks compared to the code writing task. The

positive predictors for both tasks suggest lower stress measures,

with the code review task showing a particularly pronounced effect.

However, it is important to consider the sequential nature of the

tasks performed. Since tasks were completed in a specific order, it

is possible that developers became less stressed as they progressed

to the later tasks.

Finding 2: Both the type of interruptions and the type of task

significantly affect developers’ objective stress measures. Specifi-

cally, interruptions in code comprehension and code review tasks

are associated with lower stress measures compared to the code

writing task. The presence of in-person interruptions has a signif-

icant positive impact on the physiological measures, suggesting

a reduction in stress measures when these interruptions occur.

4.3 Comparing Self-Reported and Physiological
Data

In the post-survey for each task, participants rate the level of stress

caused by each interruption from 1 to 5, where 1 is the least stressed,

and 5 is the most stressed. We noted a disparity between the objec-

tively measured stress indicators and the self-reported stress scores.

The distribution of reported stress scores is shown in Figure 5. In

this subsection, we compare between these self-reported measures

and the objective stress measurements reported in Section 4.2.

Using a linearmixed-effectmodel, we investigate the relationship

between on-screen/in-person interruptions and participants’ self-

reported stress scores. The analysis revealed in-person interruptions

have a significant effect on participants’ self-reported stress scores,

as participants’ self-reported stress scores are 1.43 (SE = ±0.25,

𝑝 < 0.0001) higher when they encountered in-person interruptions

compared to on-screen interruptions.

Surprisingly, the findings contradict the objective physiologi-

cal measurements. Participants, on average, perceived in-person

interruptions as substantially more stressful than on-screen in-

terruptions in contrast to their actual physiological data showing

Table 4: Pairwise comparisons for the self-reported stress

(from 1 to 5) between different types of in-person and on-

screen interruptions using Tukey’s Honestly Significant Dif-

ference (HSD). Delta is calculated by subtracting the self-

reported stress for on-screen interruptions from in-person

interruptions. Significant results are highlighted in bold.

Delta
On-screen 1

(Exp. Inv.)

On-screen 2

(ML Ads)

On-screen 3

(Sum-up Mtg.)

On-screen 4

(Survey Rem.)

In-person 1

(Student)
1.617 1.492 1.242 0.965

In-person 2

(PI)
3.064** 2.939** 2.689** 2.412*

(*𝑝 < 0.05, **𝑝 < 0.01)

their stress measures decrease during in-person interruptions (Sec-

tion 4.2). This discrepancy prompted further investigation into

potential factors influencing this contradiction.

We then performed an ANOVA analysis on the effect of spe-

cific types of interruptions on stress scores with the use of nested

error term to appropriately account for the dependency between

repeated measures on the same subjects: the different types of inter-

ruptions have a significant impact on participants’ self-perceived

stress score (𝑝 < 0.001). We then used Tukey’s Honestly Significant

Difference (HSD) Method to perform pairwise comparisons for the

self-perceived stress score between groups, as shown in Table 4.

The results suggest that the In-person 2 (PI) interruption type is

associated with higher self-perceived stress scores compared to

On-screen 1–4 interruption, but there is no significant difference

in self-perceived stress scores between In-person 1 (Student) and

any On-screen interruption (see Section 5.2 for limitations).

Participants’ affective states for each taskwere assessed using the

PANAS scale, which includes 10 positive and 10 negative items. Pos-

itive scores were incremented by 1 for each positive item selected,

while negative scores were incremented by 1 for each negative item

selected. However, we found no significant differences in positive

and negative scores across the three tasks. This result suggests that

participants’ perceived affective states remained relatively consis-

tent throughout the different software engineering tasks, regardless

of the presence of interruptions.

The observed discrepancy between self-perceived stress scores

is not limited to different types of interruptions but also extends to

different tasks. Specifically, based on the results from Section 4.2,

developers appear to experience a higher SDNN and RMSSD, indi-

cating lower stress measures when engaged in code comprehension

and code review tasks compared to the code writing task accord-

ing to their physiological data. Interestingly, despite the lower

objective stress measures during the code review task, we note

that in the post-survey’s open-ended question, 9 out of 20 partici-

pants mentioned some degree of disliking for the code review task.

These contrasting results raise interesting questions regarding the

relationship between stress, task preferences, and subjective ex-

periences. While the quantitative data point towards lower stress

during code review, the qualitative responses highlight participants’

aversion or discomfort towards this particular task.
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The combination of objective physiological data and self-reported

measures provides a comprehensive understanding of the impact

of interruptions on developers’ stress measures and affective states

during software engineering tasks. The observed discrepancy be-

tween subjective self-perceived stress scores and objective physio-

logical responses underscores the potential need for considering

multiple measures when evaluating stress in the software develop-

ment context.

Finding 3: The self-perceived stress levels reported by partici-

pants show a discrepancy against objective physiological data.

While developers reported higher stress levels during in-person

interruptions compared to on-screen interruptions, their objec-

tive physiological data indicate a lower stress level. While par-

ticipants’ physiological responses suggest that they experienced

lower stress levels during code comprehension and code review

tasks compared to code writing tasks, about half of the partici-

pants reported aversion towards the code review task. This might

suggest the necessity to further understand the relationship be-

tween stress, task preferences, and subjective experiences in

software development environments.

5 DISCUSSION

In this section, we discuss our study’s implications for the software

engineering community (Section 5.1) as well as the threats to valid-

ity (Section 5.2) to identify potential limitations and weaknesses

that could affect the validity of the study’s findings.

5.1 Implications

Our study’s results have several implications for both researchers

and practitioners in the field of software engineering.

First, the study reveals that different interruptions influence de-

velopers’ stress measures and productivity during various software

engineering tasks. Companies may consider adopting interruption

management strategies to minimize stress. For example, providing

customizable notification mechanisms for on-screen interruptions

and implementing interruption-free periods for developers working

on critical tasks can foster a less stressful work environment.

The study further opens up new research avenues for exploring

the complex effect of interruptions on stress and task performance

in software development. Further investigations into productivity,

stress management techniques, and the effects of different types of

interruptions can lead to more tailored interventions and strategies

to support developers in their work.

5.2 Threats to Validity

In this subsection, we address four threats to validity in our study.

First, the nature of the interruptions used in our study, while in-

spired by real-life scenarios, may not fully capture the complexity

and nuance of interruptions that occur in natural work settings. In

a laboratory setting, certain aspects such as the intensity, frequency,

and unpredictability of real-life interruptions may not be entirely

replicable. While an in-situ study design could provide insights

more reflective of real-life interruption dynamics, it also introduces

complexities in controlling and measuring variables. This study

chose a lab-based approach to balance the need for experimental

control with the objective of examining interruption effects. Fu-

ture research could explore in-situ methodologies to complement

and extend our findings. Next, we used the Empatica EmbracePlus

wristband to measure participants’ physiological responses, which

inherently entails several limitations and measurement errors that

could affect the HRV measurements. Despite this, the Empatica Em-

bracePlus wristband has been widely used in previous research (Sec-

tion 3.5), with multiple studies supporting its validity [51, 53, 57].

Third, the sample size of 20 participants is a potential threat to exter-

nal validity. We chose 20 participants after considering the study’s

complexity and time requirements. Previous studies with similar

sample sizes have found significant results in studying physiolog-

ical measures and stress [58, 59]. This participant count allowed

for in-depth analysis while managing the logistical challenges of

intensive data collection and personalized attention during the lab

sessions. Further, we note that we have reported statistically signif-

icant findings from our 20 participant cohort. Moreover, we note a

potential limitation lies in the relatively small number of problems

in the code comprehension task. We initially included an additional

hard Leetcode-style problem, but excluded it based on pilot study

results due to extended and unpredictable completion times. While

this allowed us to examine the impact of interruptions on stress and

productivity across different complexity levels, the limited number

of problems may affect the generalizability of our findings. More-

over, approximating problem difficulty based on acceptance rate

could be influenced by factors beyond inherent difficulty, such as

problem popularity. Nonetheless, by carefully selecting problems

of varying complexity levels, our findings remain relevant for un-

derstanding the intricate relationship between interruptions, task

complexity, and developer experiences in software development

environments. Lastly, the design of the dominance of requester

for in-person interruptions might be affected due to stereotypes

and implicit biases about gender and race. There could be societal

expectations or stereotypes about how different genders and races

communicate, which could impact how interruptions from a white

male professor and an Asian female student are interpreted.

6 CONCLUSION

We conducted a controlled study on the effects of interruptions on

software engineering tasks. Participants completed code writing,

code comprehension, and code review tasks while experiencing six

different in-person and on-screen interruptions. We collected their

physiological data with the Empatica EmbracePlus wristband and

gathered self-perceived evaluations through surveys. Our findings

reveal that specific on-screen interruptions, especially those with a

high dominance of requester, significantly increase the time spent

on code comprehension tasks. The combined influence of in-person

and on-screen interruptions significantly impact the time spent

during the code review process, with various interruption combina-

tions leading to different effects on task duration. Developers’ stress

measures are affected by the type of interruptions and tasks. Code

comprehension and code review tasks are associated with higher

physiological measures, and thus lower stress measures compared

to the code writing task. Surprisingly, in-person interruptions pos-

itively impact physiological measures, indicating reduced stress

measures. However, participants’ self-perceived stress scores do
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not align with the objective physiological data. Developers reported

higher stress scores during in-person interruptions, but physiologi-

cal data suggests otherwise.

These results shed light on the nuanced impact of interruptions

on developers’ performance and stress measures during software

engineering tasks. Understanding these complexities can inform

the design of interruption management strategies, task assignments,

and stress reduction interventions in software development settings.

The findings also underscore the importance of considering both

objective physiological data and self-perceived stress measures

when evaluating developers’ well-being and productivity.
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