
A Comprehensive Study of Autonomous Vehicle Bugs

Joshua Garcia⋆, Yang Feng⋆,†, Junjie Shen⋆, Sumaya Almanee⋆, Yuan Xia⋆, and Qi Alfred Chen⋆
⋆University of California, Irvine, California, USA

†Nanjing University, Nanjing, China
{joshug4, yang.feng, junjies1, salmanee, yxia11, alfchen}@uci.edu

Abstract
Self-driving cars, or Autonomous Vehicles (AVs), are increasingly
becoming an integral part of our daily life. About 50 corporations are
actively working on AVs, including large companies such as Google,
Ford, and Intel. Some AVs are already operating on public roads,
with at least one unfortunate fatality recently on record. As a result,
understanding bugs in AVs is critical for ensuring their security,
safety, robustness, and correctness. While previous studies have
focused on a variety of domains (e.g., numerical software; machine
learning; and error-handling, concurrency, and performance bugs)
to investigate bug characteristics, AVs have not been studied in a
similar manner. Recently, two software systems for AVs, Baidu
Apollo and Autoware, have emerged as frontrunners in the open-
source community and have been used by large companies and
governments (e.g., Lincoln, Volvo, Ford, Intel, Hitachi, LG, and
the US Department of Transportation). From these two leading AV
software systems, this paper describes our investigation of 16,851
commits and 499 AV bugs and introduces our classification of those
bugs into 13 root causes, 20 bug symptoms, and 18 categories of
software components those bugs often affect. We identify 16 major
findings from our study and draw broader lessons from them to guide
the research community towards future directions in software bug
detection, localization, and repair.

Keywords
bugs, defects, autonomous vehicles, empirical software engineering

ACM Reference Format:
Joshua Garcia⋆, Yang Feng⋆,†, Junjie Shen⋆, Sumaya Almanee⋆, Yuan Xia⋆,
and Qi Alfred Chen⋆. 2020. A Comprehensive Study of Autonomous Vehicle
Bugs. In ICSE ’20: International Conference on Software Engineering, May
23–29, 2020, Seoul, South Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3377811.3380397

1 Introduction
Self-driving cars, or Autonomous Vehicles (AVs), are increasingly
becoming an integral part of our daily life. For example, AVs are un-
der rapid development recently, with some companies, e.g., Google

Yang Feng is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380397

Waymo, already serving customers on public roads [6, 23, 24]. In
total, there are already about 50 corporations actively developing
AVs [1, 16]. AVs consist of both software and physical compo-
nents working jointly to achieve driving automation in the physical
world. Unfortunately, like any system relying upon software, they
are susceptible to software bugs. As a result, faults or defects in such
software are safety-critical, possibly leading to severe injuries to
passengers or even death. For instance, an AV of Uber has already
killed a pedestrian in 2018 [13, 19]. AVs with lower levels of au-
tonomy have resulted in another set of fatalities during recent years
[10, 12, 14, 15, 17, 18]. Given the safety-criticality of such vehi-
cles, it is imperative that the software controlling AVs have minimal
errors.

Unfortunately, the nature of AV software bugs is currently not
well understood. It is unclear what the root causes of bugs are in AV
software, the kinds of driving errors that may result, and the parts of
AV software that are most often affected. These kinds of information
can aid AV software researchers and engineers with (1) the creation
of AV bug detection and testing tools, (2) the localization of faults
that result in AV bugs, (3) recommendations or automated means of
repairing AV bugs, (4) measurement of the quality of AV software,
and (5) mechanisms to monitor for AV software failures.

Previous empirical studies have investigated bug characteristics
in a variety of domains including numerical software libraries [32],
machine learning libraries [38, 47, 55], concurrency bugs [40, 41],
performance bugs [39, 46], and error-handling bugs [27, 29, 49].
None of these studies have focused on bugs in AV software systems.

This paper presents the first comprehensive study of bugs in AV
software systems. Currently, there are two AV systems that achieve
high levels of autonomy and have extensive issue repositories, i.e.,
Baidu Apollo [4] and Autoware [3]. Both of these systems have
representative designs and are practical: For Baidu Apollo, its design
is selected by Udacity to teach start-of-the-art AV technology [20],
can be directly deployed on real-world AVs such as Lincoln MKZ [4],
and has already reached mass production agreements with Volvo
and Ford [5]. For Autoware, it is an open-source system for AVs
run by the Autoware Foundation [3], whose members include a
variety of industrial organizations, including Intel, Hitachi, LG, and
Xilinx. Recently, Autoware has been selected by the USDOT (US
Department of Transportation) to build their reference development
platform for intelligent transportation solutions [11, 21].

We have studied 499 AV bugs from 16,851 commits across the
Apollo and Autoware repositories. From a manual analysis of these
bugs and commits, we have identified 13 root causes, 20 symptoms
the bugs can exhibit, and 18 categories of AV software components
that exhibit a significant amount of bugs. We further assess the
relationships among the three phenomena. Based on these results,

385

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

https://doi.org/10.1145/3377811.3380397
https://doi.org/10.1145/3377811.3380397

ICSE ’20, May 23–29, 2020, Seoul, South Korea Trovato and Tobin, et al.

we suggest future research directions for software testing, analysis,
and repair of AV systems.

This paper makes the following contributions:
• We conduct the first comprehensive study of bugs in AV systems

through a manual analysis of 499 AV bugs from 16,851 commits
in the two dominant AV open-source software systems.

• We provide a classification of root causes and symptoms of bugs,
and the AV components these bugs may affect.

• We discuss and suggest future directions of research related to
software testing and analysis of AV systems.

• We make the resulting dataset from our study available for others
to replicate or reproduce, or to allow other researchers and practi-
tioners to build upon our work. Our artifacts can be found at the
following website [9].
The rest of the paper is organized as follows. The next section

provides further background on AV software systems. Section 3 dis-
cusses the methodology we use to conduct our study; the root causes,
symptoms, and affected components we identified; and overviews
and motivates the research questions we investigate. We then cover
the results of our empirical study (Section 4), follow that with a
discussion drawing broader lessons from those results (Section 5),
and detail threats to validity (Section 6). Finally, we describe related
work (Section 7) and conclude.

2 Autonomous Vehicle Systems
The Society of Automotive Engineers (SAE) defines 6 levels of
vehicle autonomy [30], with Level 0 (L0) being the lowest, i.e., no
autonomy, and Level 5 (L5) being the highest, i.e., full autonomy in
any driving environment. Level 4 (L4) is the highest autonomy level
for which no human drivers are required to stay alert and ready to
take over control anytime the system cannot make driving decisions.
Compared to L5, L4’s autonomy is limited to certain driving scenar-
ios (e.g., certain geofenced areas), but it is already enough to enable
a number of attractive use cases in practice such as highway driving,
truck delivery, and fixed-route shuttles, while being easier to ensure
safety than L5. Thus, nearly all AV companies aiming for high-level
autonomy are focusing on L4 AV development, e.g., Google, Uber,
Lyft, Baidu, GM Cruise, Ford, Aurora, TuSimple, etc. [1], and some
of them are already available to the general public, e.g., the Google
Waymo One self-driving taxi service [22]. In this work, we focus on
L4 AV systems since they have the highest autonomy level among
the AVs in production today and thus their software bugs and defects
have the highest importance in terms of safety and robustness.

In L4 AV systems, software plays a central role to achieve intelli-
gent driving functionality. For example, Fig. 1 shows the general AV
software system architecture based on state-of-the-art designs refer-
enced in most popular AV development classes such as Udacity Self-
Driving Car Engineer classes [20] and used in representative real-
world AV systems such as Baidu Apollo [4] and Autoware [3]. As
shown, such a software system is in charge of all the core decision-
making steps after receiving sensor input. Detailed functionality of
each component in an AV software system is as follows:
• Perception processes LiDAR, camera, and radar inputs and de-

tects obstacles such as vehicles and pedestrians. AV systems often
adopt multiple object detection pipelines to avoid false detection.
For example, Baidu Apollo consists of a camera-based and a

LiDAR-based object-detection pipeline, which uses segmentation
models based on Convolutional Neural Networks (CNNs). The
detected obstacles from different pipelines are then fused together
using algorithms such as a Kalman filter. Aside from detecting
obstacles, the Perception component is also in charge of traffic
light classification and lane detection.

• Localization provides an estimation of the AV’s real-time loca-
tion, which serves as the basis for driving decision-making. It ac-
cepts location measurements from GPS and LiDAR. Particularly,
a LiDAR point cloud matching algorithm (e.g., NDT [26] and
ICP [37]) finds the best match of the LiDAR input in a pre-built
High-Definition Map (HD Map) to get the LiDAR-based location
measurement. It then uses a multi-sensor fusion algorithm (e.g.,
Error State Kalman filter [52]) to fuse location measurements.

• Prediction estimates the future trajectory of the detected obstacles.
Neural networks (e.g., MLPs and RNNs) are commonly used to
evaluate the probabilities of the possible trajectories.

• Planning calculates the optimal driving trajectory considering
factors such as safety, speed, and comfort. It incorporates various
constraints (e.g., distances to obstacle trajectories, distance to
lane center, smoothness of the trajectory, etc.) and solves a Linear
Programming (LP) or Quadratic Programming (QP) problem to
calculate the future trajectory that the AV needs to follow.

• Control enforces the planned trajectory with lateral and longitu-
dinal control. It uses control algorithms such as MPC [35] and
PID [25] to calculate the required steering and throttling.

• CAN Bus handles the underlying communication between the
software and the vehicle to send control commands and receive
chassis information.

• Infrastructure provides the necessary utilities and tools for the
software, such as sensor calibration tools and CUDA [43]. It also
includes a robotics middleware (e.g., ROS [44], Cyber RT [4]),
which supports the communication among components.

• High-Definition Map (HD Map) is queried during runtime for
information such as lane boundaries, traffic sign locations, station-
ary objects, routing, etc. Some AV systems, such as Baidu Apollo,
use a centralized component called Map Engine to handle the
queries; while others, such as Autoware, handle the map queries
separately in each module.

• Human Machine Interface (HMI) collects and visualizes sys-
tem status and interfaces with developers and passengers. This is
not required for the autonomous driving function, but real-world
AV software systems, e.g., those in both Apollo and Autoware,
generally have it for usability.

3 Methodology and Classification

3.1 Data collection
We collect all commits, issues, pull requests of Apollo and Autoware
that are created on or before July 15, 2019 via the GITHUB APIs as
shown in Table 1. In total, we obtain 13,335 commits, 7,414 closed
pull requests, and 9,216 issues for Apollo and collect 3,516 commits,
1,318 closed pull requests, and 2,314 issues for Autoware.

Given that the goal of this paper is to characterize defects of AV
systems, we identify closed and merged pull requests that fix defects.
Such pull requests allow us to (1) confirm that a bug or fix was

386

A Comprehensive Study of Autonomous Vehicle Bugs ICSE ’20, May 23–29, 2020, Seoul, South Korea

Perception
(e.g., object det./trk.,

data fusion)

Localization
(e.g., LiDAR locator,

sensor fusion)

Prediction
(e.g., future

obstacle traj.)

Planning
(e.g., moving
traj. planning)

Control
(e.g., lat./long.

control)

CAN Bus
(e.g., send/recv

CAN msg.)

HMI
(e.g., monitoring,

GUI)

HD Map
(e.g., road

structure, routing)

LiDAR

Radar

Camera

GPS

IMU

Wheel

Brake

Gas

Infrastructure
(e.g., ROS, Cyber RT, utilities, tools)

Autonomous Vehicle Software System

Figure 1: State-of-the-art Autonomous Vehicle (AV) software system architecture from most popular AV development classes such as
Udacity Self-Driving Car Engineer classes [20] and real-world AV systems such as Baidu Apollo [4] and Autoware [3].

accepted by developers and (2) analyze the modified source code, re-
lated issues, and the discussion of developers. Note that, on GITHUB,
pull requests are used for various purposes (e.g., new feature imple-
mentation, enhancement, and refactoring). To categorize the purpose
of pull requests, developers often employ some keywords to tag
them. However, because tagging is often project-specific, directly
filtering bug-fix pull requests based on the tag may introduce bias. To
avoid such bias, we employ a method that helps us to obtain as many
bug-fix pull requests as possible. To that end, we adopt a method
similar to that used in previous studies [32, 38, 50, 55] to identify
bug-fix pull requests. Specifically, we set up a list of bug-related
keywords, including fix, defect, error, bug, issue, mistake, incorrect,
fault, and flaw, and then search for these words in both the tags and
titles. If any tags or title of a pull request contain at least one key-
word, we identify it as a bug-fix pull request. This process resulted
in 336 and 430 merged pull requests for Apollo and Autoware that
meet the criteria, respectively.

Table 1: Statistics of Apollo and Autoware from GitHub

System Start Date :
End Date

SLOC1

(C/C++)
SLOC

(Python)
Commits Issues Bugs

Apollo 07/04/2017–
07/15/2019

323,624 20,956 13,335 9,216 243

Autoware 08/25/2015–
06/13/2019

164,299 14,463 3,516 2,314 256

1SLOC: source lines of code

3.2 Classification and Labeling Process
To characterize AV defects, we focus on analyzing them from three
perspectives: (1) the root causes that reflect the mistakes developers
make in code; (2) the symptoms that bugs exhibit as represented by
incorrect behaviors, failures, or errors during runtime; and (3) the
AV component in which a bug resides.

Our manual analysis focused on merged pull requests because
these types of issues contain the code changes, discussions, links to
related issues, code reviews, and other information that can assist us
with gaining a comprehensive understanding of bugs and their fixes.

To reduce the subjective bias during the labeling process, we as-
sign each of the 336 and 430 merged bug-fix pull requests identified
in the data collection step to two authors of this paper. Our process
required each set of two authors to analyze the defect separately.
They manually inspected the source code, commit messages, pull-
request messages, and issue messages to identify the root causes,
symptoms, and affected AV components.

Prior research has summarized the causes of software defects and
bugs [45, 47, 51, 57]. In this paper, we initially adopted the taxonomy

of root causes presented in [45, 47] to analyze AV defects. We then
enhanced that taxonomy by using an open-coding scheme to expand
the list of root causes. Specifically, for pull requests whose root
causes did not fit into the initial taxonomy, each author conducting
the manual analysis selected her own label for the root cause. Once
all the author’s pull requests were labeled, she met with the author
sharing her assigned pull requests to resolve differences in labeling.
For bug symptoms, we followed a similar process, starting with an
initial taxonomy of symptoms (e.g., crash and hang) derived from
existing literature [32, 38, 47, 55]. We found multiple symptoms may
arise per bug cause. A single issue may have multiple bug symptoms.
Bugs may be counted twice if they fall under two different categories.

For AV components, labels were stable for top-level components
(e.g., Planning and Localization). However, certain sub-components
appeared frequently (e.g., object detection and multi-sensor fusion).
As a result, for AV components, we also had authors meet to resolve
discrepancies in labeling. Using this overall process resulted in a
final list of 243 bugs in Apollo and 256 bugs in Autoware. Multiple
issues may be mapped to the same pull request, root cause, symptom,
and component. If we remove these duplicate issues, we have 211
bug instances for Autoware instead of 256.

3.3 Root Causes of AV Bugs
Using the process described in the previous section, the full list of
root causes for AV bugs are as follows:
• Incorrect algorithm implementation (Alg): The implementa-

tion of the algorithm’s logic is incorrect and cannot be fixed by
addressing only one of the other root causes.

• Incorrect numerical computation (Num): This root cause in-
volves incorrect numerical calculations, values, or usage.

• Incorrect assignment (Assi): One or more variables is incorrectly
assigned or initialized.

• Missing condition checks (MCC): A necessary conditional state-
ment is missing.

• Data: The data structure is incorrectly defined, pointers to a data
structure are misused, or types are converted incorrectly.

• Misuse of an external interface (Exter-API): This cause in-
volves misuse of interfaces of other systems or libraries (e.g.,
deprecated methods, incorrect parameter settings, etc.)

• Misuse of an internal interface (Inter-API): This cause involves
misuse of interfaces of other components—such as mismatched
calling sequences; violating the contract of inheritance; and incor-
rect opening, reading, and writing.

• Incorrect condition logic (ICL): This occurs due to incorrect
conditional expressions.

387

ICSE ’20, May 23–29, 2020, Seoul, South Korea Trovato and Tobin, et al.

• Concurrency (Conc): This cause involves misuse of concurrency-
oriented structures (e.g., locks, critical regions, threads, etc.).

• Memory (Mem): This cause involves misuse of memory (e.g.,
improper memory allocation or de-allocation).

• Invalid Documentation (Doc): This cause involves incorrect
manuals, tutorials, code comments, and text that is not executed
by the AV system.

• Incorrect configuration (Config): This cause involves modifica-
tions to files for compilation, build, compatibility, and installation
(e.g., incorrect parameters in Docker configuration files).

• Other (OT) causes occur highly infrequently and do not fall into
any one of the above categories.

3.4 Symptoms of AV Bugs
Using the process described earlier in this section, we obtained the
following AV bug symptoms:
• Crashes terminate an AV system or component improperly.
• Hangs are characterized by an AV system or component becoming

unable to respond to inputs while its process remains running.
• Build errors prevent correct compilation, building, or installation

of an AV system or component.
• Display and GUI (DGUI) errors show erroneous output on a

GUI, visualization, or the HMI of the AV system.
• Camera (Cam) errors prevent image capture by an AV camera.
• Stop and parking (Stop) errors refer to the incorrect behaviors

occurring when the AV attempts to stop or park the vehicle (e.g.,
sudden stops at inappropriate times, failure to stop in emergency
situations, and parking outside of the intended parking space).

• Lane Positioning and Navigating (LPN) errors involve incorrect
behaviors shown in lane positioning and navigating (e.g., failing
to merge properly into a lane and failing to stay in the same lane).

• Speed and Velocity Control (SVC) symptoms involve incorrect
behaviors related to the control of vehicle speed and velocity
(e.g., failure to enforce the planned velocity and failing to follow
another vehicle at high speed).

• Traffic Light Processing (TLP) errors represent any incorrect
behaviors involving handling of traffic lights.

• Launch (Lau) symptoms occur when an AV system or component
fails to start.

• Turning (Turn) symptoms occur when an AV behaves incorrectly
when making or attempting to make a turn (e.g., turning at the
wrong angle and problems with turn signals).

• Trajectory (Traj) symptoms involve incorrect trajectory predic-
tion results (e.g., incorrect trajectory angles or predicted paths).

• IO errors involve incorrect behaviors when performing inputs or
outputs to files or devices.

• Localization (LOC) errors refer to incorrect behaviors related
with multi-sensor fusion-based localization and may manifest as
incorrect information on a vehicle’s map.

• Security & safety (SS) symptoms involve behaviors affecting
security or privacy properties (e.g., confidentiality, integrity, or
availability), damage to the vehicle, or injury to its passengers.

• Obstacle Processing (OP) errors occur when AVs incorrectly
process detected obstacles on the road (e.g., failure to correctly
estimate distance from an object).

• Logic errors represent incorrect behaviors that do not terminate
the program or fit into the aforementioned symptom categories.

• Documentation (Doc) symptoms include any errors in documen-
tation including manuals, tutorial, code comments, and other text
intended for human rather than machine consumption.

• Unreported (UN) symptoms cannot be identified by reading issue
discussions or descriptions, source code, or issue labels.

• Other (OT) symptoms occur highly infrequently and do not fit
into the above categories.

3.5 Affected AV Components
After the aforementioned labeling process, the following AV com-
ponents (described in Section 2) had a significant amount of bugs:
Perception, Localization, Prediction, HD Map, Planning, Control,
and CAN Bus. Both systems structure directories into components
shown in Figure 1 and share the same reference architecture. Table
2 shows other core components found to have a significant number
of bugs after the labeling process was completed.

Table 2: Additional Core Components with Significant Bugs
Component Description

Sensor Calibration Checks, adjusts, or standardizes sensor measurements

Drivers Contains the hardware drivers necessary for operating the AV

Robotics-MW Contains robotics middleware

Utilities & Tools Contains shared functionality that supports the core
functionality of other components

Docker Contains the Docker image housing an instance of the AV
system

Documentation &
Others

A catch-all component category for representing
documentation and sub-components with secondary
functionality that have few bugs and do not fit into other
components.

Perception, Localization, and CAN Bus components had major
sub-components with significant amounts of bugs. Table 3 depicts
those sub-components.

Table 3: AV Sub-Components with Significant Bugs
Component Sub-Component Description

Perception
Object Detection Identifies objects around the AV

Object Tracking Tracks object around the AV

Data Fusion Fuses data from different object-detection pipelines

Localization Multi-Sensor
Fusion

Fuses location measurements

Lidar Locator Obtains location measurements from Lidar

CAN Bus
Actuation Handles CAN Bus operations involving vehicle

actuation

Communication Handles general CAN Bus transmission and receipt of
data

Monitor Tracks information exchanged across the CAN Bus

3.6 Research Questions
To conduct our study, we answer the following research questions
that are concerned with root causes of AV bugs, the symptoms they
exhibit, and the components affected by AV bugs.

Previous work that has extensively studied different types of bugs
in other application domains have discussed different causes of
bugs. Understanding such causes can aid in localizing a fault and is

388

A Comprehensive Study of Autonomous Vehicle Bugs ICSE ’20, May 23–29, 2020, Seoul, South Korea

necessary for creating correct fixes of bugs. Consequently, we study
the following research question:

RQ1: To what extent do different root causes of AV bugs occur?

The effects of the bugs themselves are critical for triaging them
and assessing their impacts. In particular, the domain-specific symp-
toms of bugs, in this case as they involve AVs, are of special interest
in this study. As a result, we study the following research question:

RQ2: To what extent do different AV bug symptoms occur?

The kind and frequency of bug symptoms and their root causes
are a first step toward better understanding bugs in AV systems.
However, the extent to which a particular root cause may produce
a specific symptom allows engineers to determine more actionable
information as to how to address a bug. This leads us to study our
next research question:

RQ3: What kinds of bug symptoms can each root cause produce?

The reference architecture of an AV system allows us to better
understand the manner in which functionality and processing is
decomposed into components of a software system. Certain compo-
nents may be more prone to bugs or are more important than others
for bug identification and repair. This information further allows
researchers to know which parts of an AV system require further
effort in terms of predicting, detecting, and repairing bugs. Thus, we
investigate the following research question:

RQ4: To what extent do AV components contain bugs?

Closely related to RQ4 are the specific symptoms that occur in AV
components. Understanding the relationship between symptoms of
bugs and the AV components they affect allows engineers to allocate
more resources (e.g., developer time and effort) to the components
that exhibit the most critical errors or contain the most risky faults.
Due to Conway’s law [31], i.e., the structure of a software system
often reflects the groups of people working on the system, this
relationship can also inform managers and technical leads as to how
different bug symptoms will affect different teams of an AV system.

RQ5: To what extent do bug symptoms occur in AV components?

4 Experimental Results
Given the previously described methodology, classification, and
research questions, we now discuss our study’s results.

4.1 RQ1: Root Causes
We begin discussing experimental results by covering the frequency
of AV bugs’ root causes in Apollo and Autoware, which is depicted
in Table 4. For both AV systems, incorrect implementations of al-
gorithms (Alg) and incorrect configurations (Config) are the most
frequently occurring root causes: 74 bugs are due to incorrect algo-
rithm implementations in Apollo and 65 in Autoware; 34 bugs are
caused by incorrect configurations in Apollo and 102 in Autoware.

For incorrect algorithm implementations, repairing their resulting
errors often requires non-trivial and extensive code modifications,
potentially affecting many lines of code (i.e., 104 lines of code on
average). As a result, localizing faults in these cases or automatically
repairing them are likely to be highly challenging [36, 42, 53].

Table 4: Root Causes of Bugs in AV Systems
Root Cause Apollo Autoware Totalcause

Algorithm (Alg) 74 65 139

Numerical (Num) 14 15 29

Assignment (Assi) 25 22 47

Missing Condition Checks (MCC) 16 4 20

Data 8 2 10

External Interface (Exter-API) 1 5 6

Internal Interface (Inter-API) 5 0 5

Incorrect Condition Logic (ICL) 17 13 30

Concurrency (Conc) 2 4 6

Memory (Mem) 6 9 15

Incorrect documentation (Doc) 36 13 49

Incorrect Configuration (Config) 34 102 136

Others 5 2 7

Totalsystem 243 256 499

Finding 1: Incorrect algorithmic implementations, often involv-
ing many lines of code, cause 27.86% of AV bugs.

Incorrect configurations—which involve building, compilation,
compatibility, and installation—receive a very high amount of atten-
tion in open-source AV systems. They are particularly frequent in
Autoware with 102 such bugs occurring. This result indicates that
configuring, compiling, ensuring compatibility, and enabling instal-
lations of AV systems is highly challenging and deserves greater
attention by the software-engineering research community.

Finding 2: Incorrect configurations causes a substantial number
of AV bugs, i.e., 27.25% of such bugs.

Root causes of AV bugs that occur a relatively frequent amount
but much less frequently than Alg, Config, or Doc causes are those
involving improper assignments or initializations (Assi), incorrect
condition logic (ICL), numerical issues (Num), and missing condi-
tion checks (MCC) with each category occurring a total of 47, 30, 29,
and 20, respectively, across both systems. These kinds of root causes
typically involve a relatively small number of lines of code (e.g., 20
lines or less) and are more amenable to existing fault localization
and automatic program repair techniques [42].

Finding 3: Root causes of bugs involving relatively few lines of
code, i.e., 20 or fewer lines, cause 25.25% of bugs.

4.2 RQ2: AV Bug Symptoms
The next research question we discuss covers the symptoms that AV
bugs exhibit. Table 5 shows the types of bug symptoms we identified
that occur for Apollo and Autoware. Symptoms specific to the do-
main of AVs mainly involve errors related to driving, navigating, or
localizing the vehicle itself or perceiving the environment around the
vehicle. In total, these bug symptoms have 140 instances across both
AV systems and specifically include the following types of symp-
toms: lane positioning and navigation; speed and velocity control;
traffic-light processing; vehicle stopping, turning, trajectory, and
localization; and obstacle processing. It is notable that Apollo’s bugs
exhibit significantly more of these types of symptoms. However, this
does not necessarily indicate that Apollo has more driving bugs than

389

ICSE ’20, May 23–29, 2020, Seoul, South Korea Trovato and Tobin, et al.

Autoware. Apollo developers may focus more on identifying and
fixing these kinds of bugs than Autoware developers.

Table 5: Symptoms of Bugs in AV Systems
Symptom Apollo Autoware Totalsymp

Crash 24 29 53

Hang 1 2 3

Build 15 66 81

Camera (Cam) 2 7 9

Lane Positioning and Navigation (LPN) 20 5 25

Speed and Velocity Control (SVC) 26 16 42

Launch (Lau) 5 7 12

Traffic Light Processing (TLP) 6 1 7

Vehicle Stopping and Parking (Stop) 8 7 15

Vehicle Turning (Turn) 9 0 9

Vehicle Trajectory (Traj) 26 4 30

IO 2 8 10

Localization (Loc) 2 6 8

Obstacle Processing (OP) 3 1 4

Invalid Documentation (Doc) 36 13 49

Display and GUI (DGUI) 10 29 39

Security and Safety (SS) 3 2 5

Logic 33 24 57

Unreported (Un) 4 25 29

Others (OT) 8 4 12

Totalsystem 243 256 499

Among the driving bugs, the symptoms that occur most frequently
involve speed and velocity control, trajectory, and lane positioning
and navigation with 42, 30, and 25 total instances across both sys-
tems, respectively. These results indicate that these kinds of func-
tionality are difficult to implement correctly. At the same time, they
are also among the core functionality one would expect an AV to
perform and are inherently safety-critical. For example, the follow-
ing bug description was extracted from one of Autoware‘s issues
where one developer noticed an unexpected behaviour of the steering
control and velocity plan 1:

“Correction of angular velocity plan at the waypoint
end...At the WayPoint end point, the steering angle
control becomes unstable”

Software testing, bug detection and localization, and automatic repair
for such AV bugs would likely be highly beneficial for the AV
development community.

Finding 4: 28.06% of bugs directly affect driving functionality
of AVs with speed and velocity control, trajectory, and lane posi-
tioning and navigation occur the most frequently at 8.42%, 6.01%,
and 5.01%, respectively.

Among the types of symptoms in our classification, the one that
appears the most are actually build errors—with 15 in the case of
Apollo and 66 in the case of Autoware. Autoware bugs resulting in
build errors largely involve changes to upstream components. For
instance, new versions of ROS are released requiring major changes
to ensure compatibility in Autoware. Moreover, the build error dif-
ferences might be related to the underlying build systems used by
1https://tinyurl.com/y5vd6mqu

Apollo and Autoware. In particular, Autoware uses the native ROS
build system [44], which reuses the CMake syntax [8] when specify-
ing the compilation configurations. Apollo, on the other hand, adopts
the newer Bazel build system [7] developed by Google. However,
given that both Autoware and Apollo are built on top of robotics mid-
dleware (e.g., ROS [44] or Cyber RT [4]), an interesting direction
for future work includes determining what aspects of Autoware’s
design or the developers decision-making processes result in them
making such extensive updates.

Bugs that crash an AV software system occur relatively frequently
as well, with 53 occurrences across both AV systems. Note that
the bug reports that specify these crashes rarely indicate whether
or not they may directly affect the safe operation of the AV on a
road. As a result, it is not clear that these crashes are necessarily
safety-critical. For example, the reports do not identify whether the
bugs would result in the vehicle stalling, being unable to move,
stuck accelerating, etc. One interesting future research direction is
determining the extent to which AV crash bugs result in safety or
security-critical errors.

Logic errors occur frequently—with 57 instances in total for both
AV systems. Often, there is no indication that there are any runtime
errors that necessarily occur for the bugs reporting logic errors.
However, developers, for this symptom, often report that there is
enough potential for a runtime error occurring in the future.

Display or GUI errors are another frequent and notable type of
symptom that occurs in both AV systems—totalling 39 instances.
Apollo and Autoware each provide simulations or GUIs to allow the
user or developer to configure or assess the functionality of an AV.

Finding 5: Build errors, crashes, logic errors, and GUI errors are
among the most frequently occurring domain-independent errors in
AV systems amounting to 16.23% of bugs for build errors, 10.62%
for crashes, 11.42% for logic errors, and 7.82% for GUI errors.

Along the lines of safety and security, our explicit category that
denotes the number of bugs that are clearly identified as safety-
or security-oriented only totals 5. We found very few instances
where the bug reports clearly specify that a particular bug is in
fact a definite safety or security issue in either AV system. In fact,
many of the aforementioned driving bugs (e.g., speed and velocity
control, trajectory, and lane positioning and navigation) are likely
to be safety-critical. However, we conservatively marked bugs as
security or safety issues only if the bug report clearly denotes the bug
in question as being safety- or security-related. There is significant
amount of work that should be conducted to further assess the safety
and security properties of AV systems.

Finding 6: Bugs reported with explicit safety or security symp-
toms occur highly infrequently, constituting only 1% of AV bugs.

4.3 RQ3: Causes and Symptoms
A better understanding of the relationship between root causes, symp-
toms, and the frequency at which a particular root cause may produce
a specific symptom can guide engineers and researchers working on
AVs to prevent, detect, localize, and fix AV bugs. To that end, we
examine the results of RQ3.

Table 6 illustrates the extent to which a particular root cause re-
sulted in a specific symptom across both AV systems. Recall that

390

https://tinyurl.com/y5vd6mqu

A Comprehensive Study of Autonomous Vehicle Bugs ICSE ’20, May 23–29, 2020, Seoul, South Korea

Table 6: Frequency of symptoms that each root cause of a bug may exhibit across Apollo and Autoware.

Root Cause
Symptom Crash Hang Build Cam LPN SVC Lau TLP Stop Turn Traj IO Loc OP Doc DGUI SS Logic Un OT

Algorithm (Alg) 12 0 0 4 17 15 3 1 7 4 19 2 5 2 0 15 2 23 8 0

Numerical (Num) 1 0 0 0 2 4 0 0 0 3 4 0 1 0 0 3 0 9 2 0

Assignment (Assi) 5 0 1 2 1 6 0 1 2 2 4 3 1 0 0 4 0 11 2 2

Missing Condition Checks (MCC) 5 0 0 1 2 4 0 1 1 0 0 0 0 1 0 1 0 3 1 0

Data 1 0 1 0 0 0 0 3 0 0 1 0 1 0 0 0 0 1 0 2

External Interface (Exter-API) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 2

Internal Interface (Inter-API) 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 2 0 0 1 0

Incorrect Condition Logic (ICL) 4 0 0 0 3 8 0 1 3 0 1 1 0 1 0 1 0 4 3 0

Concurrency (Conc) 1 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Memory (Mem) 10 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1

Incorrect Documentation (Doc) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0 0 0 0 0

Incorrect Configuration (Conf) 13 0 79 2 0 3 8 0 1 0 1 1 0 0 0 10 3 5 8 2

Others 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 1 3

Total 53 3 81 9 25 42 12 7 15 9 30 10 8 4 49 39 5 57 29 12

incorrect algorithm implementations were the most frequently oc-
curring root cause in our classification scheme. Unsurprisingly, that
cause resulted in a wide variety of symptoms, producing 16 out of
20 of the symptoms in our classification scheme. This root cause
results in many symptoms directly affecting the correct driving of
a vehicle (i.e., lane positioning and navigation, speed and velocity
control, traffic-light processing, stopping and parking, vehicle turn-
ing and trajectory, localization, and obstacle processing). Symptoms
especially affected by incorrect algorithm implementations include
lane positioning and navigation (17 occurrences), speed and veloc-
ity control (15 occurrences), and trajectory (19 occurrences). This
indicates that implementing such algorithms has a high complexity
compared to other aspects of AV driving. Other symptoms that oc-
cur frequently due to incorrect algorithm implementations include
crashes (12 occurrences), display and GUI errors (15 occurrences),
and logic errors (23 occurrences). Given that many lines of code (i.e.,
104 lines of code on average) often need to be added or modified
to fix AV bugs arising due to incorrect algorithm implementations,
a wide variety of AV-specific and safety-critical bugs are likely to
be inapplicable for state-of-the-art fault localization and automatic
program-repair techniques [36, 42, 53].

Finding 7: Incorrect algorithm implementations involving many
lines of code caused all 8 types of symptoms that directly affect
the driving of a vehicle and caused 16 out of all 20 symptoms in
our classification scheme.

The second-most frequently occurring cause is incorrect configu-
rations involving compilation, building, compatibility, and installa-
tion (Config), as described in Section 4.1. Despite the total number
of bugs due to this cause (136 instances) being similar to the number
for incorrect algorithm implementations (139 instances), incorrect
configurations only caused 13 out of 20 of the symptoms in our
classification schema—with a vast majority of those symptoms be-
ing build errors, i.e., 79 out of 136 (58.09%). This result further
reinforces that simply building or compiling such systems is highly
non-trivial and can benefit from software-engineering research that
aids in this process (e.g., bug detection and repair for handling
upstream changes). Besides build errors, incorrect configurations
caused a significant number of crashes, inability of components of

the AV system to launch (Lau), display and GUI errors (DGUI), and
logic errors.

Finding 8: Incorrect configurations caused a wide variety of
bug symptoms, 13 out of 20, with a vast majority resulting in
build errors, 79 out of 136 (58.09%)—indicating that properly
configuring, building, and compiling these AV systems is a non-
trivial maintenance effort.

Recall that bugs caused by incorrect assignments or initializations
occurred relatively frequently across both AV systems, i.e., 47 in-
stances out of a total of 499 (9.42%). This root cause produced 15
out of 20 of the symptoms in our classification scheme. This cause
was particularly prominent for logic errors, crashes, display and
GUI errors, IO errors, errors involving speed or velocity control, and
trajectory errors. A relatively wide variety and significant amount of
such errors may be automatically repaired or, at least, identified and
localized using existing state-of-the-art approaches.

Misuse of conditional statements and incorrect condition logic
mainly produced errors involving lane positioning and navigation,
speed and velocity control, and crashes. Such root causes also re-
sulted in logic errors that may lead to a future runtime error but
did not necessarily occur at the time of the bug report. Fixing these
combinations of bugs and symptoms often involve a relatively small
number of changes to code, i.e., about 20 lines of code or less, mak-
ing them particularly amenable to existing fault localization and
automatic program-repair approaches.

Finding 9: Incorrect assignments of variables, conditional state-
ments, or condition logic caused 16 out of 20 AV bug symptoms.

Concurrency and memory errors are infrequently reported, indi-
cating that they also likely occur infrequently in AV systems. Such
root causes also had little effect on the actual successful driving
of the vehicle, with only two instances occurring: A concurrency
issue and a memory issue caused a bug involving speed and velocity
control, respectively. However, no other driving symptom arose due
to such potentially serious errors. Note that, as expected, memory
errors did cause a reasonable number of crashes, i.e., 10 in our study.

391

ICSE ’20, May 23–29, 2020, Seoul, South Korea Trovato and Tobin, et al.

Finding 10: Concurrency and memory misuse caused relatively
few bug symptoms, i.e., 21 out of 499 bugs (4.21%).

4.4 RQ4: Bug Occurrences in AV Components
In this section, we examine the frequency of bug occurrences in
AV components of the reference architecture introduced in Section
2. Table 7 presents the number of occurrences for each top-level
component, as described in Sections 2 and 3—or sub-component of
the Perception, Localization, or CAN Bus components—for Apollo
and Autoware. Bug occurrences for sub-components are shown if a
significant number of bugs were found in them.

Table 7: Frequency of bug occurrences for each AV component
Component Sub-Component Apollo Autoware Totalcomp

Perception

Object Detection 17 38 55

Object Tracking 2 9 11

Data Fusion 11 6 17

Localization
Multi-Sensor

Fusion
9 21 30

Lidar Locator 1 26 27

Trajectory Prediction 7 1 8

Map 13 5 18

Planning 93 42 135

Control 4 0 4

Sensor Calibration 11 11 22

Drivers 3 15 18

CAN Bus

Actuation 4 2 6

Communication 2 0 2

Monitor 4 2 6

Robotics-MW 1 6 7

Utilities and Tools 12 41 53

Docker 7 6 13

Documentation and Others 42 25 67

Totalsystem 243 256 499

The number of bugs found in the Planning components of the
AV systems far exceed that of others, totalling 135 bugs out of 499
(i.e., 27.05% of all bugs). For comparison, the second-most bug-
ridden component type, Perception, only contains 83 bugs across
both systems (i.e., 16.63% of all AV bugs)—resulting in Planning
having 61.48% more bugs than Perception. It is reasonable that
developers focus a significant amount of their effort on Planning
because it makes major driving decisions about the safety, speed,
and passenger comfort of an AV.

Bugs are generally found in three Perception sub-components:
object detection, object tracking, and data fusion. The number of
bugs in object detection (55) far exceeds the number of bugs found
in either object tracking (11) or data fusion (17). Perception must
handle sensor input from a variety of sources (e.g., LiDAR, camera,
and radar) and use complex algorithms (e.g., Convolutional Neural
Networks and Kalman filters). The module must also detect obsta-
cles, classify traffic lights, and detect lanes. Due to this complexity,
it is sensible for Perception to have such a high number of bugs.

Following Perception in terms of bug occurrences are Local-
ization components, which account for 57 bugs out of 499 total
(11.42%). Localization estimates an AV’s real-time location based

on a variety of location measurements and fuses them together.
Multi-sensor fusion and lidar locator sub-components each have a
similar number of bugs across both systems with 30 instances and
27 instances, respectively.

Finding 11: The core AV components with the greatest num-
ber of bugs across both systems are Planning, Perception, and
Localization—ordered from most bug-ridden to least—with 135
(27.05%), 83 (16.63%), and 57 (11.42%) bugs, respectively.

A substantial number of bugs involve functionality that does not
provide core logic that fits into the major components as described
in Section 2. 53 out of 499 bugs (10.62%) occur in components
that provide utilities or tools that support core functionality and are
often used by a variety of other components. For example, Figure
2 was obtained from one of Autoware’s issues2 and it shows a bug
related to the runtime manager, which is one of the utilities responsi-
ble for starting and terminating Autoware’s functional components.
This bug prevented the runtime manager parameters from getting
saved. Another significant number of bugs are either documentation-
oriented, or occur infrequently and do not fit into other component
categories, constituting 67 bugs across both AV systems (13.43%).

Finding 12: Many bugs do not occur in the core domain-specific
functionality of AV systems—constituting 53 bugs (10.62%) in the
case of utilities and 67 bugs (13.43%) involving documentation
bugs or bugs that do not occur frequently enough to fall into a
major component category.

Figure 2: A bug found in one of Autoware’s utilities.

4.5 RQ5: Bug Symptoms in AV Components
The final research question we study relates symptoms of bugs
with the AV components they affect. Studying such a relationship
allows engineers to better distribute engineering effort and other
development resources (e.g., testing budget) to the components that
exhibit the most bugs or the bug types that are of greatest importance
to AV stakeholders.

Table 8 illustrates the extent to which different bug symptoms
occur in components and sub-components across both Apollo and
Autoware. Symptoms involving driving and operation of the vehicle
are largely associated with bugs in Planning. Specifically, out of
140 bugs directly affecting driving of the vehicle, 90 of them affect
Planning. Five particular driving symptoms—i.e., lane positioning
and navigation (LPN), speed and velocity control (SVC), stopping
and parking (Stop), vehicle turning (Turn) and trajectory (Traj)—that
appear particularly frequently in Planning constitute 87 of the 140
driving bugs (62.14%). As an example, the following code snippet
from Apollo illustrates a driving bug in Planning 3:

if (init_trajectory_point_.v() <

2https://tinyurl.com/yxskk46n
3https://tinyurl.com/y4v4l7mc

392

https://tinyurl.com/yxskk46n
https://tinyurl.com/y4v4l7mc

A Comprehensive Study of Autonomous Vehicle Bugs ICSE ’20, May 23–29, 2020, Seoul, South Korea

Table 8: Occurrences of bug symptoms in components of Apollo and Autoware

Component

Sub-Component

Symptom

Crash Hang Build Cam LPN SVC Lau TFP Stop Turn Traj IO Loc OP Doc DGUI SS Logic UN OT

Perception
Object Detection 12 0 16 1 1 3 2 4 0 0 0 1 0 0 0 5 0 4 6 0

Object Tracking 3 1 2 0 2 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0

Data Fusion 5 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 2 4 0

Localization Multi-Sensor Fusion 3 1 7 4 0 2 1 0 0 0 0 0 5 0 0 1 0 3 3 0

Lidar Locator 8 0 5 0 0 2 0 0 0 0 1 0 3 0 2 0 0 4 1 1

Prediction 0 0 0 0 1 1 0 0 0 0 5 0 0 0 0 0 0 1 0 0

Map 0 0 1 0 4 1 1 1 0 0 3 0 0 0 1 0 0 5 1 0

Planning 8 0 4 0 17 29 0 1 14 6 21 3 0 2 4 4 1 12 8 1

Control 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 1 0 0

Calibration 2 0 1 1 0 0 1 0 0 0 0 2 0 1 3 3 0 6 0 2

Drivers 0 0 4 1 0 0 0 0 0 0 0 3 0 0 0 4 0 3 1 2

CAN Bus
Actuation 0 0 2 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 1

Communication 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

Monitor 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Robotics-MW 2 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0

Utilities 6 0 12 1 0 0 3 0 0 0 0 1 0 0 0 16 2 9 2 1

Docker 0 0 7 0 0 0 1 0 0 0 0 0 0 0 0 0 1 2 1 1

Documentation & Others 2 0 16 0 0 1 1 0 1 0 0 0 0 0 38 4 0 1 1 2

qp_spline_path_config_.uturn_speed_limit() &&

!is_change_lane_path_ &&

qp_spline_path_config_.reference_line_weight() > 0.0)

Specifically, the first conditional statement ensures that the current
speed is less than the speed limit enforced for a U-turn.

Besides the sheer number of bugs in Planning identified in the
previous section, the symptoms of bugs exhibited in the component
indicate its high importance for assuring an AV system with low
errors and high quality.

Finding 13: Planning components have both a high number of
bugs and exhibit many symptoms that are particularly important
for safe and correct driving of AVs (62.14% of driving bugs).

Many bugs that crash AV components occur mainly in Perception
(20 bugs), Localization (11 bugs), Planning (8 bugs), and Utilities
(6 bugs). The fact that AVs can potentially be crashed substantially
through the component that processes sensor inputs (i.e., Percep-
tion) is particularly concerning: A skilled malicious adversary with
enough time may be able to turn a crash into an attack. Additionally,
crashing components that let the AV know its position in the environ-
ment (i.e., Localization) or even prevent it from making decisions
(i.e., Planning) may cause the AV to stop functioning, think it is
somewhere it is not, or make dangerous decisions.

Finding 14: Crash bugs occur throughout critical AV
components—especially Perception, Localization, and Planning—
making them susceptible to more dangerous secondary effects.

Build errors affect the overwhelming majority of AV component
types, i.e., 16 out of 18 in our classification scheme. This result
further corroborates the non-trivial nature of properly building and
compiling AV systems, providing further evidence that solving and
automating this challenge is an open and important research problem.

Finding 15: Build errors affect many components, 15 out of 18
(83.33%).

Few bug symptoms affect 8 more components or sub-components,
i.e., more than 40% of components in our classification scheme.
Besides crashes and build errors, the only symptoms that occur that
frequently include speed and velocity control (SVC), display and
GUI errors (DGUI), and logic errors. SVC bugs, in particular, span
9 or more components, which is quite high for a domain-specific
symptom focused on a particular type of functionality of AVs. DGUI
and logic errors are relatively general and not domain-specific, so
their high occurrence across components is less surprising.

Finding 16: Bugs exhibiting speed and velocity control errors
affect a significant number of AV components, i.e., 9 out of 18
components (50.00%) .

5 Discussion
Using the major findings of the previous section, we will discuss the
larger implications of our study’s results. In particular, we will draw
lessons from the findings that can guide future work in areas related
to software testing, analysis, and repair of AVs.

Findings 2. 5, 8, and 15 involve incorrect configurations or build
errors. To summarize those findings, 27.25% of bugs occur due to
incorrect configurations, while 16.23% of bugs result in build er-
rors. Incorrect configurations cause a wide variety of symptoms (13
out of 20) and build errors affect many components (15 out of 18).
This suggests that a major amount of time and effort expended by
engineers are spent simply dealing with compatibility and compila-
tion issues, upstream changes, and ensuring proper installation. If
software-engineering research can aid engineers with such a prob-
lem, this would potentially open up a substantial amount of time

393

ICSE ’20, May 23–29, 2020, Seoul, South Korea Trovato and Tobin, et al.

that engineers can spend actually ensuring safe, secure, and correct
autonomous-driving functionality.

Incorrect algorithm implementations cause many bugs (27.86%
of AV bugs), often involve many lines of code (104 lines of code
on average), and cause many symptoms (16 out of 20), including
all eight domain-specific driving symptoms, as corroborated by
Findings 1 and 7. These findings strongly suggest that existing bug
localization and repair approaches likely need to be augmented with
domain-specific information and the ability to conduct repairs that
involve many lines of non-trivial code.

Despite this, there is evidence that a significant amount of bugs
may be applicable to existing bug detection, localization, and repair
techniques. Specifically, bugs involving relatively few lines of code
constitute about 25.25% of bugs (Finding 3) and simpler bugs (e.g.,
incorrect assignments and condition logic, and missing condition
checks) cause 16 out of 20 AV bug symptoms (Finding 9). These
results indicate that our study’s dataset, consisting of AV bug causes
and symptoms, would significantly aid researchers with assessing or
constructing bug detection, localization, and repair techniques.

With few bugs being reported that explicitly identify safety and se-
curity concerns in AV systems (Findings 6), it is unclear how safe or
secure open-source AV systems are. This strongly indicates the need
for researchers to focus more effort on assessing and ensuring these
critical properties in AV software. Particularly, certain bugs (e.g.,
crashes in Finding 14) may have security and safety implications
and should be further explored in future work.

Software testing and analysis research for AVs have heavily fo-
cused on only a sub-component of Perception, i.e., object detection
[48, 54]. However, our study provides significant evidence that many
bugs, especially those that most involve actually driving the vehicle,
occur in many other components (Findings 15 and 16)—especially
Planning and Localization (Findings 11 and 13). With Planning hav-
ing the overwhelmingly largest proportion of bugs (62.14%) and
affecting 7 out of 8 driving symptoms, it is arguable that researchers
should focus more on Planning than Perception. Even in the case
of Perception, object tracking and data fusion, two sub-components
that are not studied in terms of software testing and analysis, as far
as we are aware, constitute 33.73% of bugs in Perception—while
object detection covers the remaining Perception bugs.

6 Threats to validity
Internal threats. The primary internal threat to validity involves
subjective bias or errors in classification of bugs. To reduce this
threat, we initiate our labelling process with classification schemes
from existing literature [45, 47], and adopt an open-coding scheme
to assist us in expanding the initial schemes. To ensure that we focus
on real bugs and fixes, we selected only accepted and closed issues
(e.g., when determining issues related to a pull request), or merged
and closed pull requests, and used bug tags when available. Further,
each bug is inspected and labelled by two authors independently.
Any discrepancy is discussed until a consensus is reached.

When issues, pull requests, or code were insufficient for facilitat-
ing classification into a particular category, we assigned the corre-
sponding bug to the OT (Other) category. We also had discussions
with Apollo developers about their bugs, allowing us to improve our
classification, reducing subjective bias and error in the process.

External threats. One external threat is the generalizability of
the data set we collected. We have adopted several strategies to
mitigate this threat. First, the raw data we collected includes all
pull requests, commits, and issues from the creation of subject AV
systems until July 15, 2019. This strategy assures this study covers a
comprehensive set of data. Second, we have adopted a method simi-
lar to those used in existing bug studies [32, 38, 50, 55] to identify
as many bug-fix pull requests as possible in the data pre-processing
step. Third, we have only studied the merged pull requests that fix
bugs to ensure that the studied bugs, as well as their corresponding
fixes, are accepted by developers.

Another threat to external validity is the generalizability of our
findings. We study two AV systems, Apollo and Autoware, which are
developed by two independent groups. Although there are only two
systems in our study, they are the most widely used open-source AV
systems containing over 520,000 lines of code, over 16,000 commits,
and more than 10,000 issues. Additionally, these AV systems are
used by about 50 corporations and governments—including the US
government, Google, Intel, Volvo, Ford, Hitachi, and LG [1, 5, 6, 11,
16, 21, 23, 24]. Furthermore, the number of labeled bugs (499 in this
study) is similar in size to that of other recent bug studies in other
domains (e.g., 555 [38] and 175 [55] for deep learning and 269 for
numerical libraries [32]). Given that we focus on L4 AV systems,
Apollo and Autoware are the only systems that achieve that high
level of autonomy and have extensive, as well as publicly accessible,
issue repositories [2, 3]. Given the high level of autonomy and sizes
of data in our study, its findings are more likely to be representative
and generalizable to other AV software aiming for L4 autonomy.

7 Related Work
Empirical study on bugs. A great number of work has been con-
ducted that studies bugs in different types of software systems.
Franco et al. [32] studied the bugs that occur in numerical soft-
ware libraries such as NumPy, SciPy, and LAPACK. Islam et al. [38],
Thung et al. [47], and Zhang et al. [55] investigated machine learning
and deep learning frameworks (e.g., Caffe, Tensorflow, OpenNLP,
etc.). Leesatapornwongsa et al. [40] and Lu et al. [41] analyzed
concurrency bugs in distributed systems such as Hadoop and HBase.
Jin et al. [39] and Selakovic et al. [46] studied performance bugs in
large-scale software suites such as Apache, Chrome, and GCC. Dif-
ferent from this prior work, we are the first to perform an empirical
study on bugs in emerging AV software systems.

Across existing empirical studies [32, 38–41, 46, 47, 55], bugs
are often characterized based on multiple dimensions including bug
types, root causes, and bug symptoms. Some work has categorized
bugs using domain-specific characteristics, such as the triggering
of timing conditions for concurrency bugs [41]. Compared to this
prior work, we apply and adapt these bug characterization methods
to bugs in a different domain, i.e., AV software systems.

AV software robustness. For AVs, ensuring the robustness of
its software system is the top priority—as any software bugs may
incur serious damage to both the road entities and the AV itself.
Unfortunately, many fatal accidents have occurred in recent years
due to the lack of software robustness. For example, Tesla’s autopilot
system has been the culprit of several deaths over recent years [10,
12, 14, 15, 17, 18]. Uber’s AV system reportedly failed to prevent

394

A Comprehensive Study of Autonomous Vehicle Bugs ICSE ’20, May 23–29, 2020, Seoul, South Korea

the crash after detecting the pedestrian 6 seconds before the accident
in Tempe, AZ [13, 19]. Moreover, machine learning models used
in AV systems (e.g., in Perception) have been found vulnerable to
attacks (e.g., physical-world perturbations [33, 34, 56] or sensor
attacks [28]). Compared to these case-by-case discoveries of AV-
system robustness issues, we are the first to systematically collect,
taxonomize, and characterize bugs in AV systems, which is a critical
first step towards eliminating them in a principled manner.

8 Conclusion
AV systems are increasingly operating throughout our daily lives.
Given the fact that AV systems are designed for safety-critical tasks,
it is vital that software-engineering researchers build robust quality-
assurance techniques and methods for them. In this paper, we char-
acterized and taxonomized bugs for AV systems—identifying 13
root causes and 20 symptoms across 18 components for 499 bugs
from Apollo and Autoware, the only two open-source AV systems
achieving high levels of autonomy (L4). Both researchers and devel-
opers of the AV systems can benefit from this study. For developers,
we summarize 16 findings from this study to help them deal with
bugs. For researchers, we distill challenges from our findings that
call for more research effort. Our findings offer both developers and
researchers a principled and improved understanding of AV bugs.

For future work, we aim to reproduce bugs we found in this study.
Achieving this reproduction requires overcoming numerous research
challenges including understanding and specifying driving scenarios
in a simulator, and controlling it carefully to precisely trigger bugs.
Additionally, we aim to construct techniques for automatic test-
case generation and test-oracle construction for AV systems and
assessing the degree to which fuzzing, search-based testing, and
symbolic execution are applicable to AV software systems. Lastly,
we are refining our study’s results to produce a benchmark dataset
for facilitating automatic program repair for AV software systems.

9 Acknowledgement
This work was supported in part by awards CNS-1823262, CNS-
1850533, CNS-1932464, and CNS-1929771 from the National Sci-
ence Foundation and the National Natural Science Foundation of
China (61832009,61932012).

References
[1] August 2019. 46 Corporations Working On Autonomous Vehicles. https://www.

cbinsights.com/research/autonomous-driverless-vehicles-corporations-list/.
[2] August 2019. Apollo Cyber RT. https://github.com/ApolloAuto/apollo/tree/

master/cyber.
[3] August 2019. Autoware: Open-source software for urban autonomous driving.

https://github.com/CPFL/Autoware.
[4] August 2019. Baidu Apollo: An open autonomous driving platform. http://apollo.

auto/.
[5] August 2019. Baidu hits the gas on autonomous vehicles with Volvo and Ford deals.

https://techcrunch.com/2018/11/01/baidu-volvo-ford-autonomous-driving/.
[6] August 2019. Baidu starts mass production of autonomous buses. https://www.

dw.com/en/baidu-starts-mass-production-of-autonomous-buses/a-44525629.
[7] August 2019. Bazel. https://bazel.build/.
[8] August 2019. CMake. https://cmake.org/.
[9] August 2019. A Comprehensive Study of Autonomous Vehicle Bugs - Artifact

Website. http://tiny.cc/cps_bug_analysis.
[10] August 2019. Fatal Tesla Crash Exposes Gap In Automaker’s Use Of Car

Data. https://www.forbes.com/sites/alanohnsman/2018/04/16/tesla-autopilot-
fatal-crash-waze-hazard-alerts/#7bb735fb5572.

[11] August 2019. Github: The CARMA platform. https://github.com/usdot-fhwa-
stol/CARMAPlatform.

[12] August 2019. Self-Driving Tesla Was Involved in Fatal Crash, U.S.
Says. https://www.nytimes.com/2016/07/01/business/self-driving-tesla-fatal-
crash-investigation.html.

[13] August 2019. Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots
Roam. https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.
html.

[14] August 2019. Tesla: Autopilot was on during deadly Mountain View
crash. https://www.mercurynews.com/2018/03/30/tesla-autopilot-was-on-during-
deadly-mountain-view-crash/.

[15] August 2019. Tesla driver dies in first fatal crash while using autopilot
mode. https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-
death-self-driving-car-elon-musk.

[16] August 2019. The 18 Companies Most Likely to Get Self-driving Dars on the
Road First. https://www.businessinsider.com/the-companies-most-likely-to-get-
driverless-cars-on-the-road-first-2017-4.

[17] August 2019. There are some scary similarities between Tesla’s deadly crashes
linked to Autopilot . https://qz.com/783009/the-scary-similarities-between-teslas-
tsla-deadly-autopilot-crashes/.

[18] August 2019. Two Years On, A Father Is Still Fighting Tesla Over Autopilot
And His Son’s Fatal Crash . https://jalopnik.com/two-years-on-a-father-is-still-
fighting-tesla-over-aut-1823189786.

[19] August 2019. Uber Self-Driving Car Crash: What Really Happened.
https://www.forbes.com/sites/meriameberboucha/2018/05/28/uber-self-driving-
car-crash-what-really-happened.

[20] August 2019. Udacity: Self-Driving Fundamentals: Featuring Apollo. https://www.
udacity.com/course/self-driving-car-fundamentals-featuring-apollo--ud0419.

[21] August 2019. USDOT: The CARMA platform. https://highways.dot.gov/research/
research-programs/operations/CARMA.

[22] August 2019. Waymo Launches Self-driving car Service Waymo
One. https://techcrunch.com/2018/12/05/waymo-launches-self-driving-car-
service-waymo-one.

[23] August 2019. Waymo’s autonomous cars have driven 8 million miles on public
roads. https://www.theverge.com/2018/7/20/17595968/waymo-self-driving-cars-
8-million-miles-testing.

[24] August 2019. You can take a ride in a self-driving Lyft during CES. https:
//www.theverge.com/2018/1/2/16841090/lyft-aptiv-self-driving-car-ces-2018.

[25] Karl J Åström and Björn Wittenmark. 2013. Adaptive control. Courier Corpora-
tion.

[26] Peter Biber and Wolfgang Straßer. 2003. The normal distributions transform: A
new approach to laser scan matching. In Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453),
Vol. 3. IEEE, 2743–2748.

[27] N. Cacho, E. A. Barbosa, J. Araujo, F. Pranto, A. Garcia, T. Cesar, E. Soares,
A. Cassio, T. Filipe, and I. Garcia. 2014. How Does Exception Handling Be-
havior Evolve? An Exploratory Study in Java and C# Applications. In 2014
IEEE International Conference on Software Maintenance and Evolution. 31–40.
https://doi.org/10.1109/ICSME.2014.25

[28] Yulong Cao, Chaowei Xiao, Dawei Yang, Jing Fang, Ruigang Yang, Mingyan
Liu, and Bo Li. 2019. Adversarial Objects Against LiDAR-Based Autonomous
Driving Systems. arXiv preprint arXiv:1907.05418 (2019).

[29] R. Coelho, L. Almeida, G. Gousios, and A. v Deursen. 2015. Unveiling Exception
Handling Bug Hazards in Android Based on GitHub and Google Code Issues.
In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories.
134–145. https://doi.org/10.1109/MSR.2015.20

[30] SAE On-Road Automated Vehicle Standards Committee et al. 2014. Taxonomy
and definitions for terms related to on-road motor vehicle automated driving
systems. SAE Standard J 3016 (2014), 1–16.

[31] Melvin E Conway. 1968. How do committees invent. Datamation 14, 4 (1968),
28–31.

[32] Anthony Di Franco, Hui Guo, and Cindy Rubio-GonzÃąlez. 2017. A Com-
prehensive Study of Real-world Numerical Bug Characteristics. In Proceed-
ings of the 32Nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2017). IEEE Press, Piscataway, NJ, USA, 509–519. http:
//dl.acm.org/citation.cfm?id=3155562.3155627 event-place: Urbana-Champaign,
IL, USA.

[33] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Flo-
rian Tramer, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2018. Physical
Adversarial Examples for Object Detectors. In USENIX Workshop on Offensive
Technologies (WOOT).

[34] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2017. Robust physical-
world attacks on deep learning models. arXiv preprint arXiv:1707.08945 (2017).

[35] Carlos E Garcia, David M Prett, and Manfred Morari. 1989. Model predictive
control: theory and practiceâĂŤa survey. Automatica 25, 3 (1989), 335–348.

[36] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program
repair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. ACM, 19–30.

395

https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list/
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list/
https://github.com/ApolloAuto/apollo/tree/master/cyber
https://github.com/ApolloAuto/apollo/tree/master/cyber
https://github.com/CPFL/Autoware
http://apollo.auto/
http://apollo.auto/
https://techcrunch.com/2018/11/01/baidu-volvo-ford-autonomous-driving/
https://www.dw.com/en/baidu-starts-mass-production-of-autonomous-buses/a-44525629
https://www.dw.com/en/baidu-starts-mass-production-of-autonomous-buses/a-44525629
https://bazel.build/
https://cmake.org/
http://tiny.cc/cps_bug_analysis
https://www.forbes.com/sites/alanohnsman/2018/04/16/tesla-autopilot-fatal-crash-waze-hazard-alerts/#7bb735fb5572
https://www.forbes.com/sites/alanohnsman/2018/04/16/tesla-autopilot-fatal-crash-waze-hazard-alerts/#7bb735fb5572
https://github.com/usdot-fhwa-stol/CARMAPlatform
https://github.com/usdot-fhwa-stol/CARMAPlatform
https://www.nytimes.com/2016/07/01/business/self-driving-tesla-fatal-crash-investigation.html
https://www.nytimes.com/2016/07/01/business/self-driving-tesla-fatal-crash-investigation.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.mercurynews.com/2018/03/30/tesla-autopilot-was-on-during-deadly-mountain-view-crash/
https://www.mercurynews.com/2018/03/30/tesla-autopilot-was-on-during-deadly-mountain-view-crash/
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
https://www.businessinsider.com/the-companies-most-likely-to-get-driverless-cars-on-the-road-first-2017-4
https://www.businessinsider.com/the-companies-most-likely-to-get-driverless-cars-on-the-road-first-2017-4
https://qz.com/783009/the-scary-similarities-between-teslas-tsla-deadly-autopilot-crashes/
https://qz.com/783009/the-scary-similarities-between-teslas-tsla-deadly-autopilot-crashes/
https://jalopnik.com/two-years-on-a-father-is-still-fighting-tesla-over-aut-1823189786
https://jalopnik.com/two-years-on-a-father-is-still-fighting-tesla-over-aut-1823189786
https://www.forbes.com/sites/meriameberboucha/2018/05/28/uber-self-driving-car-crash-what-really-happened
https://www.forbes.com/sites/meriameberboucha/2018/05/28/uber-self-driving-car-crash-what-really-happened
https://www.udacity.com/course/self-driving-car-fundamentals-featuring-apollo--ud0419
https://www.udacity.com/course/self-driving-car-fundamentals-featuring-apollo--ud0419
https://highways.dot.gov/research/research-programs/operations/CARMA
https://highways.dot.gov/research/research-programs/operations/CARMA
https://techcrunch.com/2018/12/05/waymo-launches-self-driving-car-service-waymo-one
https://techcrunch.com/2018/12/05/waymo-launches-self-driving-car-service-waymo-one
https://www.theverge.com/2018/7/20/17595968/waymo-self-driving-cars-8-million-miles-testing
https://www.theverge.com/2018/7/20/17595968/waymo-self-driving-cars-8-million-miles-testing
https://www.theverge.com/2018/1/2/16841090/lyft-aptiv-self-driving-car-ces-2018
https://www.theverge.com/2018/1/2/16841090/lyft-aptiv-self-driving-car-ces-2018
https://doi.org/10.1109/ICSME.2014.25
https://doi.org/10.1109/MSR.2015.20
http://dl.acm.org/citation.cfm?id=3155562.3155627
http://dl.acm.org/citation.cfm?id=3155562.3155627

ICSE ’20, May 23–29, 2020, Seoul, South Korea Trovato and Tobin, et al.

[37] Dirk Holz, Alexandru E Ichim, Federico Tombari, Radu B Rusu, and Sven Behnke.
2015. Registration with the point cloud library: A modular framework for aligning
in 3-D. IEEE Robotics & Automation Magazine 22, 4 (2015), 110–124.

[38] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
Comprehensive Study on Deep Learning Bug Characteristics. arXiv:1906.01388
[cs] (June 2019). http://arxiv.org/abs/1906.01388 arXiv: 1906.01388.

[39] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.
Understanding and Detecting Real-world Performance Bugs. In Proceedings of
the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’12). ACM, New York, NY, USA, 77–88. https://doi.org/
10.1145/2254064.2254075 event-place: Beijing, China.

[40] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gu-
nawi. 2016. TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs
in Datacenter Distributed Systems. In Proceedings of the Twenty-First Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’16). ACM, New York, NY, USA, 517–530.
https://doi.org/10.1145/2872362.2872374 event-place: Atlanta, Georgia, USA.

[41] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
Mistakes: A Comprehensive Study on Real World Concurrency Bug Characteris-
tics. In Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XIII). ACM, New
York, NY, USA, 329–339. https://doi.org/10.1145/1346281.1346323 event-place:
Seattle, WA, USA.

[42] Manish Motwani, Sandhya Sankaranarayanan, René Just, and Yuriy Brun. 2018.
Do automated program repair techniques repair hard and important bugs? Empir-
ical Software Engineering 23, 5 (01 Oct 2018), 2901–2947. https://doi.org/10.
1007/s10664-017-9550-0

[43] Nvidia. 2010. CUDA Programming guide.
[44] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,

Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3. Kobe, Japan, 5.

[45] Carolyn B. Seaman, Forrest Shull, Myrna Regardie, Denis Elbert, Raimund L.
Feldmann, Yuepu Guo, and Sally Godfrey. 2008. Defect Categorization: Making
Use of a Decade of Widely Varying Historical Data. In Proceedings of the Second
ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM ’08). ACM, New York, NY, USA, 149–157. https://doi.org/
10.1145/1414004.1414030

[46] Marija Selakovic and Michael Pradel. 2016. Performance Issues and Optimizations
in JavaScript: An Empirical Study. In Proceedings of the 38th International
Conference on Software Engineering (ICSE ’16). ACM, New York, NY, USA,
61–72. https://doi.org/10.1145/2884781.2884829 event-place: Austin, Texas.

[47] F. Thung, S. Wang, D. Lo, and L. Jiang. 2012. An Empirical Study of Bugs
in Machine Learning Systems. In 2012 IEEE 23rd International Symposium on
Software Reliability Engineering. 271–280. https://doi.org/10.1109/ISSRE.2012.
22

[48] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Auto-
mated Testing of Deep-neural-network-driven Autonomous Cars. In International
Conference on Software Engineering (ICSE).

[49] Yuchi Tian and Baishakhi Ray. 2017. Automatically Diagnosing and Repairing
Error Handling Bugs in C. In Proceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA,
752–762. https://doi.org/10.1145/3106237.3106300 event-place: Paderborn,
Germany.

[50] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and productivity outcomes relating to continuous integration
in GitHub. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ACM, 805–816.

[51] Zhiyuan Wan, David Lo, Xin Xia, and Liang Cai. 2017. Bug characteristics
in blockchain systems: a large-scale empirical study. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE, 413–
424.

[52] Greg Welch and Gary Bishop. 1995. An introduction to the Kalman Filter. (1995).
[53] X. Xia, L. Bao, D. Lo, and S. Li. 2016. âĂIJAutomated Debugging Considered

HarmfulâĂİ Considered Harmful: A User Study Revisiting the Usefulness of
Spectra-Based Fault Localization Techniques with Professionals Using Real Bugs
from Large Systems. In 2016 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). 267–278. https://doi.org/10.1109/ICSME.2016.67

[54] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
2018. DeepRoad: GAN-based Metamorphic Testing and Input Validation Frame-
work for Autonomous Driving Systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE 2018). ACM,
New York, NY, USA, 132–142. https://doi.org/10.1145/3238147.3238187

[55] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.
2018. An Empirical Study on TensorFlow Program Bugs. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2018). ACM, New York, NY, USA, 129–140. https://doi.org/10.1145/
3213846.3213866 event-place: Amsterdam, Netherlands.

[56] Yue Zhao, Hong Zhu, Ruigang Liang, Qintao Shen, Shengzhi Zhang, and Kai
Chen. 2018. Seeing isn’t Believing: Practical Adversarial Attack Against Object
Detectors. arXiv preprint arXiv:1812.10217 (2018).

[57] Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Haibo Lin, Haoxiang Lin, and
Tingting Qin. 2015. An empirical study on quality issues of production big
data platform. In Proceedings of the 37th International Conference on Software
Engineering-Volume 2. IEEE Press, 17–26.

396

http://arxiv.org/abs/1906.01388
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/2872362.2872374
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1007/s10664-017-9550-0
https://doi.org/10.1007/s10664-017-9550-0
https://doi.org/10.1145/1414004.1414030
https://doi.org/10.1145/1414004.1414030
https://doi.org/10.1145/2884781.2884829
https://doi.org/10.1109/ISSRE.2012.22
https://doi.org/10.1109/ISSRE.2012.22
https://doi.org/10.1145/3106237.3106300
https://doi.org/10.1109/ICSME.2016.67
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1145/3213846.3213866

