
Selective Symbolic Type-Guided Checkpointing and Restoration
for Autonomous Vehicle Repair

Yu Huang

University of Michigan

yhhy@umich.edu

Kevin Angstadt

University of Michigan

angstadt@umich.edu

Kevin Leach

University of Michigan

kjleach@umich.edu

Westley Weimer

University of Michigan

weimerw@umich.edu

ABSTRACT
Fault tolerant design can help autonomous vehicle systems address

defects, environmental changes and security attacks. Checkpoint

and restoration fault tolerance techniques save a copy of an ap-

plication’s state before a problem occurs and restore that state

afterwards. However, traditional Checkpoint/Restore techniques

still admit high overhead, may carry along tainted data, and rarely

operate in tandem with human-written or automated repairs that

modify source code or alter data layout. Thus, it can be difficult

to apply traditional Checkpoint/Restore techniques to solve the

issues of non-environmental defects, security attacks or software

bugs. To address such challenges, in this paper, we propose and

evaluate a selective checkpoint and restore (SCR) technique that

records only critical system state based on types and minimal sym-

bolic annotations to deploy repaired programs. We found that using

source-level symbolic information allows an application to be re-

sumed even after its code is modified in our evaluation. We evaluate

our approach using a commodity autonomous vehicle system and

demonstrate that it admits manual and automated software repairs,

does not carry tainted data, and has low overhead.

KEYWORDS
checkpoint, restore, repair, maintenance, autonomous vehicle

ACM Reference Format:
Yu Huang, Kevin Angstadt, Kevin Leach, and Westley Weimer. 2020. Selec-

tive Symbolic Type-Guided Checkpointing and Restoration for Autonomous

Vehicle Repair. In IEEE/ACM 42nd International Conference on Software En-
gineering Workshops (ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3387940.3392201

1 INTRODUCTION
Autonomous vehicle systems (AVS) are an emerging area facing

many software engineering challenges [57]. These systems must

handle failures caused by software bugs, environmental changes,

and security attacks. Addressing such issues usually requires costly

human intervention and deployment of system repairs. Previous

work in fault tolerant systems has successfully reduced human

effort for more traditional server and workstation software set-

tings [18, 38, 45]. One important aspect of fault tolerance is failure

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00

https://doi.org/10.1145/3387940.3392201

transparency [27], or the extent to which failures are invisible to

users and applications. Failure transparency is especially relevant

for cyber physical systems (such as AVS) that interact with the physi-

cal world: a vehicle may continue to move through inertia or gravity

even if its software systems fail, pause or restart. To provide failure

transparency, applications must resume after failures without help

from users and also minimize space or time overhead compared

to failure-free execution. One common approach, called Check-
point/Restore or Checkpoint/Restart, provides such transparency by

checkpointing the program state at a known-good configuration

and then resuming later if there is a failure.

There has been significant interest in mitigating software failures

in modern embedded systems, especially those with a high require-

ment for resiliency, such as AVS [17, 64]. Compared to traditional

systems, AVS face more issues associated with rich environmen-

tal inputs and interactions. This complicates failure transparency

compared to server or workstation software systems [16].However,

most Checkpoint/Restore systems depend on the “fail-stop assump-

tion” [51] (applications will not commit faulty state) and do not

allow deployment of patches in the restoration phase, which is not

applicable to certain autonomous vehicle software bugs or security

attacks. In this paper, we propose to address three challenges re-

lated to Checkpoint/Restore to provide failure transparency that

admits the deployment of software repairs for AVS.

First, Checkpoint/Restore must support patches to software. AVS

require rapid repair of system defects and vulnerabilities. Tradi-

tional Checkpoint/Restore systems are based on the assumption

that unexpected environmental conditions (e.g., dropped network

packets and power outages) are transient and will not be present

when the system is restored [51]. However, non-environmental

defects are rarely transient. For example, a null pointer dereference

resulting from faulty logic will usually recur if the software system

resumes. To address such issues, the system must be patched or

updated. This requires that a different (patched) system is restored

from the one that was checkpointed. As a result, Checkpoint/Re-

store must be able to operate in cases where a software’s code and

related data structures are changed from the application of system

repairs between the checkpointing and restoration.

Second, Checkpoint/Restore must be low overhead. For real time

embedded systems like AVS, there is very limited storage space

and tolerance for time overhead. Traditional Checkpoint/Restore

solutions introduce significant space, time and hardware costs. Early

techniques often required redundant hardware to mirror ongoing

computations [39]. Even modern user-space techniques that do not

require hardware support still suffer from high space overhead [1].

Moreover, Checkpoint/Restore must be able to complete before

timing constraints are violated. In the case of AVS, violating a timing

https://doi.org/10.1145/3387940.3392201
https://doi.org/10.1145/3387940.3392201

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Yu Huang, Kevin Angstadt, Kevin Leach, and Westley Weimer

constraint with high-overhead checkpointing anf restoration may

cause the vehicle to become physically damaged.

Third, Checkpoint/Restore must not carry along tainted data.
AVS must be able to resume without faulty behaviors recurring.

Traditional Checkpoint/Restore solutions often struggle with se-

curity attacks that taint application state. This concern relates to

the abstraction of failure transparency [27], which requires two in-

variants: sufficient application state must be saved to guarantee the

application can resume from before the failure occurs, and sufficient

application state must be lost so that the application can recover

from failures affecting the state. Saving either too much or too little

application state precludes failure transparency. Since most tradi-

tional Checkpoint/Restore approaches store the entire system state,

they also store attacker-tainted data, resulting in post-restoration

systems that remain compromised.

In this paper, we combine two insights to address these chal-

lenges and limitations. Our first algorithmic insight is to leverage

existing developer domain knowledge for symbolic annotations to

specify the critical state of an application. Modern object-oriented

and imperative software systems tend to encapsulate related vari-

ables in classes or structures. This includes AVS software, such

as ROS
1
or ArduPilot.

2
As a result, a small number of type-based

annotations can often precisely capture the most critical state of

a system (e.g., state that is too expensive to recompute or must

otherwise be carefully checkpointed to allow the system to restore

correctly). Our second insight is that we can automatically generate

symbolic application-specific Checkpointing/Restore code in a type-

directed manner. The use of symbolic references allows the system

to resume in the face of most repairs (e.g., changes to program

data structures need not preclude restoration). We thus present a

selective checkpoint and restore (SCR) algorithm which saves the

critical state of an application based on minimal annotations.

To evaluate SCR, we present the results of a case study focusing

on its application to AVS software. To assess resuming a system in

the presence of software repairs, we consider ArduPilot, a common

AVS framework, as the specimen system. We use human-written

patches to ArduPilot and also consider a patch produced by the

Darjeeling automated program repair algorithm [58]. To evaluate

efficiency, we measure the time and space overhead of resuming

the AVS system and compare against CRIU [35], a state-of-the-

art Checkpoint/Restore baseline. To evaluate whether the system

can avoid checkpointing tainted data during security attacks, we

evaluate SCR using a security attack provided by an independent

third part (a “Red Team”). Finally, to assess usability, we measure

the annotation effort required to deploy it in this AVS scenario.

In summary, the main contributions of this paper are:

• SCR, a Selective Checkpoint/Restore algorithm for record-

ing and restoring critical parts of system state in a type-

guided manner with minimal annotation burden and negli-

gible space overhead.

• An evaluation of SCR’s time and space overhead, resumption

success, and annotation burden compared to CRIU, a state-

of-the-art baseline, using human- and machine-generated

patches for ArduPilot, an idicative AVS. SCR’s time overhead

1
http://www.ros.org — the Robot Operating System

2
https://ardupilot.com — an open-source autopilot system

is typically 2–20% higher than CRIU’s, but its space overhead

is 2000× lower.

• Empirical results measuring SCR’s end-to-end efficiency and

success using the ArduPilot AVS. SCR successfully check-

points and resumes the system in the presence of both human-

written and automated system repairs and tainted data in

100% of all considered scenarios, while CRIU only succeeds

less than 40% of the time.

2 RELATEDWORK
In this section, we discuss related work in Checkpoint/Restore

systems, autonomous vehicle systems, software repair techniques,

and manual annotations.

2.1 Checkpoint/Restore Systems
Checkpoint/Restore systems have been widely studied to provide

fault tolerance and failure transparency. We discuss library and

system implementations [49].

Library-based solutions often require an application to be linked

with a Checkpoint/Restore library that provides necessary serializa-

tion primitives [1, 4, 6, 38]. Some library-based Checkpoint/Restore

solutions, such as libckpt [61] allow user-directed checkpointing,

which can improve the performance of checkpointing, but it does

not apply to heap variables or to variables which reside in the

statically-allocated data segment. Additionally, some programming

environments provide serialization support, such as pickling combi-

nators for functional programming [20] or serialization interfaces

in the Boost library for C++ [44].

In contrast to library approaches, system-level implementations

of Checkpoint/Restore mechanisms are usually built upon the op-

erating system or hardware [11, 37, 49, 60, 65]. Recent system-level

implementations introduce different improvements, such as support

for parallel programming models and side effects [24, 32, 34, 36, 50].

CRIU [35] is a popular system-level approach mainly implemented

in user-space for Linux. It can Checkpoint/Restore an application

by saving the entire process tree. While CRIU is a mature, stable,

widely-used tool, it does not admit resilience against changed or

patched versions of software nor does it support selectively check-

pointing a subset of a program’s state. Dynamic Software Updating

(DSU) [12, 52] can allow changing software at runtime (e.g., by

altering function pointers), but still risks carrying over tainted data.

To the best of our knowledge, our proposed SCR approach is the

first technique designed to support source code updates between

checkpointing and restoration with low space and performance

overhead. Supporting these goals requires that we make use of

user-provided annotations, but our approach does not require extra

library linking and will work on variables laid out in any data seg-

ment. Moreover, our SCR approach does not depend on a particular

system environment because the annotations, checkpointing, and

restoration implementations are confined to the application code

without depending on specific kernel functionality. In Section 4.2,

we articulate how SCR is applied to a real-world AVS scenario.

2.2 Security Assurance and AVS
Autonomous vehicle systems are complex systems that combine

hardware for interfacing with sensors and actuators with control

http://www.ros.org
https://ardupilot.com

Selective Symbolic Type-Guided Checkpointing and Restoration for Autonomous Vehicle Repair ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

software designed to complete a statically- or dynamically-defined

mission. A mission, or task, is a sequence of operations that the

vehicle is directed to complete. In practice, missions often consist a

sequence of GPS coordinates to which the vehicle must navigate.

Several researchers have discussed the security issues of au-

tonomous vehicles [17, 22, 42, 56, 64], including embedded com-

puting and sensors, policies, network connectivity, and attack and

defense strategies. Well-studied security issues of autonomous ve-

hicles include confidentiality, integrity and availability threats [16].

Malicious attacks can happen through communication interruption

or the fabrication or modification of information, such as malware

injection, GPS spoofing, and control channel jamming [29, 54].

Some widely-used system-level defenses include address space lay-

out randomization [14], instruction set randomization [19], and the

NX bit, among others. These approaches defend against different

types of security attacks, such as buffer overruns and control flow

hijacking. However, they cannot cover all potential attacks and

are not helpful for large classes of defects. Because there are many

security attacks that touch different data structures, we propose

a symbolic approach focused on mission-critical data that avoids

checkpointing other, possibly-tainted, information.

2.3 Automated Program Repair
Automated program repair techniques take a program and a test

suite (or specification) as input and generate patches to make the

program satisfy that notion of correctness. While we do propose

novel automated program repair algorithms here, recent approaches

have used automated program repair “on the fly” for autonomous

vehicles [13, 62]. Automated program repair provides a strong mo-

tivation for enabling technology for resilient autonomous systems

that checkpoint state, automatically synthesize and deploy software-

level repairs mid-mission, restore state and resume the mission.

A significant amount of research has shown that automated pro-

gram repair can fix bugs for real-world software [7, 25, 26, 28, 30,

33, 40, 41, 59, 63], scaling to millions of lines of code and thousands

of test cases. A thorough discussion of automated program repair is

beyond the scope of this work; [9] present a survey and [31] gives

an annotated bibliography of recent advances. Traditional Check-

point/Restore techniques do not support source code changes dur-

ing restoration. Our symbolic approach to checkpointing, based on

source-level variable names, supports combining program patching

(manual or automatic) with Checkpoint/Restore to defend against

attacks and software defects in a system.

2.4 Annotations
In our proposed SCR algorithm, we rely on symbolic annotations

provided by the user to indicate the critical state to Checkpoint/Re-

store. In software engineering, various approaches have been pro-

posed to reduce such annotation effort. Houdini [8] is an automatic

tool to reduce the cost of writing specifications manually by gener-

ating a large number of candidate annotations and using axiomatic

semantics to retain only those that correctly describe the system.

The annotations inferred by Houdini describe functional behavior

but do not pinpoint security-critical data.

A number of modeling or specification languages, including

SLIC [2], Z [55], and Alloy [15], have been used to describe a sys-

tem’s abstract behavior. These are not a natural fit for our approach

because they are designed to abstract away implementation details

of a software whereas we need implementation information and

relevant data structures to guide selective checkpointing.

CQual [53], JQual [10] and Banshee [23] are type qualifier sys-

tems that can be used to detect tainting errors (e.g., format string

bugs). These techniques could work for annotating critical state,

but with certain caveats. First, they tend to focus on specific se-

curity vulnerabilities (e.g., related to the sources and sinks of a

given tainting model). More importantly, they typically attempt to

compute a minimal set of possibly-tainted variables. Checkpointing

everything not marked as possibly-tainted would incur too much

overhead in our AVS use case.

3 AUTOMATIC SELECTIVE CHECKPOINT
AND RESTORE GENERATION

In this section, we present SCR, an algorithm for selectively and

symbolically checkpointing system state in a type-guided man-

ner, as specified by manual annotations. To use SCR, a user first

annotates particular variables (see Section 3.2) that should be (or

should not be) checkpointed as well as program points at which

that checkpointing should occur. Then, SCR automatically gener-

ates serialization and deserialization functions that checkpoint and

restore those selected variables symbolically (i.e., based on their

source-level names, not on their addresses, offsets or layouts) and

links this code with the system to be protected (see Section 3.1).

These functions carry out a recursive, type-guided traversal of rele-

vant data structures (with appropriate memoization to handle cyclic

references). At run-time, checkpoints are periodically created, and

after a patch or other software modification, the last checkpoint

(taken with respect to the pre-patch software) is restored.

3.1 SCR serialization and deserialization
The heart of SCR is thus the automatic generation of serialization

and deserialization functions. This process is selective (i.e., it only

considers variables implicated by user annotations) and symbolic

(i.e., named components of complex data structures are stored indi-

vidually, rather than as contiguous blocks of memory). This aspect

of SCR is similar in spirit to pickling combinators or serialization

libraries [20]. However, pickling combinators depend on functional

language features (e.g., functions are explicitly first class), and seri-

alization libraries require linking against potentially large libraries

that do not admit adoption in embedded devices (e.g., AVS).

Algorithm 1 provides pseudocode for serialization code genera-

tion in SCR. Critically, it operates both at compile- (processing types

and emitting serialization code) and run-time (executing the gener-

ated serialization code to create checkpoints). For every source-level

type τ that is relevant to serialization (as determined by the annota-

tions), a corresponding serialize_τ() function is created at com-

pile time. If type τ1 contains a (recursive) reference to type τ2, then
serialize_τ1() contains a (recursive) call to serialize_τ2().

Given a program P , a variable x of type τ to serialize, and a

source location l , the algorithm generates serialization functions at

compile time by recursively decomposing the structure of the type

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Yu Huang, Kevin Angstadt, Kevin Leach, and Westley Weimer

Algorithm 1 High-level pseudocode for SCR.

Input: Program P to be selectively checkpointed.

Input: A variable x ∈ P of type τ to be checkpointed.

Input: A location l ∈ P at which to serialize x .
1: procedure SCR(P ,x ,τ , l)
2: call CompileTimeProcess(τ)
3: at l in P emit “clear memoizeSet; srlz_τ (x);”

4: procedure CompileTimeProcess(τ)
5: if τ = int ∨ τ = float ∨ τ = enum then
6: emit “srlz_τ (τ &x) { write x to file; }”

7: else if τ = τ ′ ptr then
8: call CompileTimeProcess(τ ′)
9: emit “srlz_τ (τ &x) {

10: write x to file; if (x < memoizeSet) {

11: add x to memoizeSet; seralize_τ ′(*x); } }”
12: else if τ = τ ′ array[n] then
13: call CompileTimeProcess(τ ′)
14: emit “srlz_τ (τ &x) { ”

15: for i ∈ 1 . . .n do
16: emit “ srlz_τ ′(x[i]);”
17: emit “}”
18: else if τ = { f1 : τ1, . . . , fn : τn } struct then
19: for i ∈ 1 . . .n do
20: call CompileTimeProcess(τi)
21: emit “srlz_τ (τ &x) { ”

22: for i ∈ 1 . . .n do
23: emit “ srlz_τi (x.fi);”
24: emit “}”
25: else if τ = { f1 : τ1, . . . , fn : τn } union then
26: i = argmaxx ∈1...n sizeof (τx)
27: call CompileTimeProcess(τi)
28: emit “srlz_τ (τ &x) { srlz_τi (x.fi); }”

τ . For some primitive scalar types (e.g., int, float, enum), SCR emits

a procedure that directly serializes the value to a file. For pointers,

we emit a procedure that, at run-time, first serializes the pointer

address and then checks to see if that address has been previously

processed during this run-time serialization using a memoization

set. This serves to detect cycles, such as in a circularly linked list.

If the address has not been memoized, it is added to the memoiza-

tion set, and the serialization function for the dereferenced value is

called. Note that the address is serialized in both cases; this allows

the deserialization code, which also maintains a memoization set,

to operate in lock-step. For arrays, SCR emits code that iteratively

serializes every array element. Similarly, structures are handled

by serializing every field. For union types, we determine the type

of the largest field at compile time, then recursively emit serial-

ization code for that type. Note that union types, which normally

complicate source-level analyses as they represent implicit casts

between values that share the same storage space, are easier for

SCR to handle. We need not know or track which variant field of the

union was accessed last or will be accessed next since we serialize

the entire storage space regardless.

Finally, after all of the relevant serialization functions have been

generated, we emit a call to serialize x at the user-specified location

A

B

D

C

SW1

(a)

CPi CPi+1

Attack Occurs/Detect
Software Defects

C
SW1

(b)

C

PATCH

CPi

SW2

(c)

A

B

D

C
Continue

the mission

SW2CPi

(d)

Figure 1: An indicative checkpoint-detect-repair-restore use
case for SCR, detailed in Section 4.2.
l in P . The result of the algorithm is the original program integrated

with the emitted mutually-recursive serialization functions and

initial serialization call. For simplicity, we present the algorithm for

a single annotated variable x ; the extension to multiple variables is

direct. The generation of deserialization code is symmetric.

3.2 Annotations
At the coarsest level, the user provides annotations to SCR in the

form of the set of source-level variable names x to checkpoint and

the source-level location l at which to call the serialization and dese-
rialization functions (Algorithm 1). By default, SCR checkpoints all

fields and types transitively reachable from each variable x . How-
ever, in an AVS setting, not all fields or types contain critical data

that should be checkpointed. For example, some fields may hold

real-time sensor data which should be re-acquired on restoration

rather than restored. Similarly, some fields may be tainted by an

attacker and should be recalculated rather than restored. To address

this issue, SCR allows the user to specifically include or exclude

fields or types from checkpointing. Because the serialization func-

tions generated are symbolic, entire contiguous data structures

need not be stored: fields or types can be excluded from both seri-

alization and deserialization. In our prototype, fields and types are

specified through simple #pragma or comment annotations.

4 SYSTEM & EXPERIMENTAL DESIGN
In this section, we first introduce the specimen system we used

to evaluate SCR, our proposed selective checkpoint and restore

algorithm. We then discuss an indicative use case to demonstrate

how SCR can apply to a modern autonomous vehicle software

system. Finally, we detail our experimental design.

4.1 Specimen System
We evaluate SCR on ArduPilot, an open-source autopilot system

atop a Unix-like operating system with a real-time kernel. Au-

tonomous vehicle systems are particularly relevant to checkpoint

and restore systems [16, 17, 42, 64] but also strongly benefit from

patching and other resiliency actions [13, 62] (see Section 2.2). Our

experiments use the ArduCopter module of ArduPilot to control a

quadcopter autonomous aerial vehicle. The vehicle is controlled re-

motely via theMicro Autonomous Vehicle Link (MAVLink) protocol.

This high-level architecture is indicative of popular autonomous ve-

hicles like the Erle-Copter and various Raspberry Pi-based copters.

4.2 Indicative Use Case
We consider a use case in which an uncrewed autonomous vehicle

(UAV) completes a four-waypoint mission during which undesir-

able behavior is observed and repaired, such as depicted in Figure 1.

Selective Symbolic Type-Guided Checkpointing and Restoration for Autonomous Vehicle Repair ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 2: BusRoute: a 21-waypoint UAVmission plan of a bus
route in the area of Ann Arbor, Michigan, USA.

Prior to deployment, the developer annotates relevant data struc-

tures, executes SCR, and loads the modified binary onto the vehicle.

Duringmission execution (1a), the selected state is repeatedly check-

pointed. Near waypoint C, the operator or vehicle detects an attack

or anomaly (e.g., via various off-the-shelf techniques [5, 47]), which

necessitates patching the software to complete the mission (1b).

The automated repair system [9, 31] constructs a patch while the

vehicle loiters safely [13]. The patch is deployed, potentially chang-

ing certain aspects of the code and data layout of the system. The

latest checkpoint, captured with respect to the pre-patch software,

is then restored into the post-patch system (1c). Finally, the mission

resumes and runs to completion (1d).

Patches to UAV softwaremay introduce new—or reorder existing—

fields within a structure. Because SCR restores variables based on

source-level names rather than original memory locations, our

system can successfully resume the software after such a patch

is applied. In contrast, traditional approaches may fail due to the

alterations in memory layout.

4.3 Experimental Design
We designed our experiments to measure SCR’s ability to success-

fully checkpoint and restore in the face of patches, as well as its

performance overhead. We compare it to CRIU [35], a state-of-the-

art baseline (see Section 2). To admit reproducible experimentation

for both tools, we use the Software in the Loop (SITL) simulator pro-

vided by ArduPilot, but we have validated the Red Team-provided

arc injection bug and APR patch in live flight (see Section 4.3.4).

4.3.1 Variables to Checkpoint. Our approach requires manual an-

notation of mission-critical variables (see Sections 2.4 and 3.2). After

manual analysis of the source code for mission-critical variables, we

selected all of the primitive fields of the Copter class as well as its

AP_Mission and AP_AHRS object fields. We evaluate the difficulty

of this analysis and annotation effort in Section 5.2.

4.3.2 Missions. We applied SCR and CRIU to two long-running,

autonomous missions: ISTAR and BusRoute. The ISTAR mission is

taken from previously-published work also using ArduPilot soft-

ware [13]. This mission is an indicative simplification of a certain

class of intelligence, surveillance, target acquisition, and recon-

naissance (ISTAR) activities deemed relevant to the US Air Force.

This mission contains six waypoints around an airfield. The entire

mission route is 0.13 kilometers. Our second mission (BusRoute)
follows a municipal bus route in Ann Arbor, Michigan, as shown

in Figure 2. This mission contains 21 waypoints, each one of which

corresponds to a bus stop. The maximum diameter of this mission

is 4.72 kilometers. The entire mission route is 7.55 kilometers.

4.3.3 Control Software. Our use case includes checkpointing the
state associated with one version of the software, modifying the

software, and then restoring the state into the new version of the

software (see Section 4.2). For our experiments, we considered both

human-written and APR-generated patches: (a) we collected five

different versions of the ArduPilot software from its GitHub commit

history. The differences between software versions correspond to

patches (e.g., to fix a defect or security vulnerability); (b) we used a

version of ArudPilot seeded with an arc injection security vulnera-

bility by a Red Team paired with its associated patch (produced by

Darjeeling, an APR algorithm [58]). This was taken from part of a

US Air Force assessment, in which Assured Information Security

highlighted attacks, both found and seeded, against ArduPilot.

The five versions in (a) are the first five consecutive commits

starting from Jan 23, 2018 that contain source code changes re-

lated to ArduPilot’s ArduCopter module (i.e., not configuration file

changes or changes to unusedmodules). They are indicative patches

made by human developers. Each patch modifies between 60 and

160 lines of code. We refer to these five versions as V 0 through V 4.

The arc injection vulnerability in (b) was seeded in V 0.

4.3.4 Experiment setup. We designed our experiments following

the steps below to simulate a scenario in which the UAV encounters

a bug during a mission, is patched, and resumes its mission. For

the human-written patches (a), we: (1) Preselect a random point

in the mission to correspond to the simulated defect; (2) Start the

ArduPilot quadcopter and its associated support software; (3) Load

and start the mission; (4) When the preselected point is reached,

checkpoint the system state and terminate the control software; (5)

Resume a different version of the ArduPilot system (i.e., apply a

patch); (6) Restore checkpointed data; and (7) Complete the mission.

For the APR-generated patch (b), instead of simulating a defect

at a random point, we used the exploit provided by the Red Team,

which used specially-crafted MAVLink packets to cause a system

crash. During the mission, we checkpointed the state repeatedly

and used the latest checkpointed state to resume the system with an

APR-generated patch applied that fixes the security vulnerability.

In all cases, we repeated these steps 50 times for every version

using both SCR and CRIU. We also repeated the missions 50 times

without any checkpointing or restore operations to establish a

baseline for overhead comparisons.

4.3.5 Measurement. We measured the time and space overhead as

well as whether or not each mission completed.

CRIU. CRIU time overhead includes two parts: (1) The time of

the mission from waypoint 0 to the preselected checkpoint location.

This time period includes the time of CRIU checkpointing. (2) The

time from invoking CRIU to restore (i.e., resume the ArduPilot ap-

plication and mission) to reaching the last waypoint of the mission.

This period includes the time taken by CRIU to restore the system.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Yu Huang, Kevin Angstadt, Kevin Leach, and Westley Weimer

SCR. SCR time overhead includes three parts: (1) the time of the

mission from waypoint 0 to the preselected checkpoint location

or the location where attack happens. This time period includes

checkpointing time. (2) The launch time of ArduPilot and its associ-

ated software when resuming a new version of the system. (3) The

time from calling the restore function to reaching the last waypoint.

This period includes the time to selectively restore mission state.

The difference between the measures is due to the different ar-

chitectures between CRIU and SCR. Because CRIU is implemented

atop the /proc file system and the process tree, its restore action

does not require a re-launch or re-initialization of ArduPilot or

its associated software. In contrast, SCR operates symbolically on

in-memory variables, and restoration proceeds by executing the

new binary until it reaches the restoration point. Note that in our

approach, the software system is started twice: once at the begin-

ning of the mission and once before the restore. By contrast, with

CRIU, the system is only started once: CRIU stores all of the state

and does not need to rerun any start up code. The cost of starting

the software twice is included in our evaluation times.

In addition to the time overhead, we also measured the space

overhead for every experiment: the memory space necessary to

store all the checkpointing information (i.e., on disk).

5 EXPERIMENTAL RESULTS
We address the following research questions:

RQ1 How does SCR’s overhead compare to baselines?

RQ2 Does SCR successfully restore state after patching?

RQ3 How hard is it for programmers to annotate for SCR?

5.1 Restoration Success and Performance
Table 1 shows the restoration success and overhead for two UAV

missions (ISTAR and BusRoute) using our the proposed selective

checkpoint and restore algorithm (SCR) and CRIU (see Section 4.3.4).

Different rows correspond to different patches (i.e., software ver-

sion changes) applied between checkpointing and restoration. We

also list the baseline performance of running each mission with-

out any checkpointing, patching or restoration. Table 1 also shows

the restoration success and overhead with the Red Team provided

ArduPilot version and an APR-generated patch for the ISTAR mis-

sion using SCR and CRIU. The Red Team attack uses the ISTAR
waypoints but runs the mission at a slower speed. The ± values

show one standard deviation over 50 repeated measurements.

Time overhead. The UAV systemwith SCR took longer than the

CRIU system to complete each mission. As noted in Section 4.3.5,

SCR requires restarting the ArduPilot software to support mid-

mission patching. The average launch time of ArduPilot for our

experiments is 1.96 seconds. This restart time is a fixed cost that

does not vary with mission complexity; it is more relevant in the

shorter ISTAR mission than the longer BusRoute mission.

If the ArduPilot re-launch time is removed, no statistically signif-

icant difference remains between the CRIU and SCR time overheads.

Both CRIU and SCR introduced a time overhead of 0.2–5.5 seconds,

compared to not checkpointing (i.e., the Baseline), over all human-

patched experiments. The majority of this overhead corresponds to

caching and other indirect effects. SCR introduced a time overhead

of 9 seconds approximately in the APR-patched experiments. This

Table 1: Restoration success and overhead measurements
for SCR and CRIU on the ISTAR and BusRoute missions us-
ing both human-written and APR-generated patches. The
“Baseline” row corresponds to running the mission with-
out checkpointing, patching or restoration. Cells marked ✗

could not successfully execute, resulting in mission failure.

ISTAR Mission, Human Patches

Patch Time (s) Space Success

Baseline none (V 0) 7.45 ± 0.26 n/a n/a

CRIU

V 0→ V 0 8.15 ± 0.55 822.37 ± 19.96KB 100%

V 0→ V 1 8.18 ± 0.55 823.44 ± 4.23KB 100%

V 0→ V 2 ✗ ✗ ✗

V 0→ V 3 ✗ ✗ ✗

V 0→ V 4 ✗ ✗ ✗

SCR

V 0→ V 0 9.92 ± 0.86 290B 100%

V 0→ V 1 9.73 ± 0.37 290B 100%

V 0→ V 2 9.83 ± 0.38 290B 100%

V 0→ V 3 9.80 ± 0.69 290B 100%

V 0→ V 4 9.76 ± 0.92 290B 100%

BusRoute Mission, Human Patches

Patch Time (s) Space Success

Baseline none (V 0) 250.83 ± 0.11 n/a n/a

CRIU

V 0→ V 0 251.03 ± 0.20 821.52 ± 2.87KB 100%

V 0→ V 1 254.31 ± 21.09 823.60 ± 15.18KB 100%

V 0→ V 2 ✗ ✗ ✗

V 0→ V 3 ✗ ✗ ✗

V 0→ V 4 ✗ ✗ ✗

SCR

V 0→ V 0 254.59 ± 7.21 290B 100%

V 0→ V 1 253.94 ± 0.87 290B 100%

V 0→ V 2 254.02 ± 0.79 290B 100%

V 0→ V 3 256.48 ± 14.17 290B 100%

V 0→ V 4 255.46 ± 11.65 290B 100%

ISTAR Mission, Red Team Bug, APR Patch

Time (s) Space Success

Baseline 47.46 ± 0.16 n/a n/a

CRIU ✗ ✗ ✗

SCR 56.60 ± 1.53 290B 100%

time overhead is larger because these experiments were conducted

at a lower simulation speed—the Red Team exploits depend on real

time. SCR storage times were quite low relatively (e.g., it required

an average of 0.18 ms for checkpointing and 0.14 ms for restoration)

and are thus not reported separately.

Space overhead. For these missions, SCR, which checkpointed

only the mission- and security-critical data implicated by the user

annotations, required only 290 bytes. By contrast, CRIU, which does

not require annotations but does save the majority of the process

state, required 822KB. In these experiments, SCR demonstrates a

2000× reduction in storage required by checkpointing. We note

that both CRIU and SCR captured enough state for the mission

to progress: neither had to restart the mission “from scratch” or

revisit any waypoints after being interrupted and resumed. SCR

adds 12KB to the ArduPilot binary, which is less than 1% of the

total size of ArduPilot (1.57Mb). CRIU requires 1.6Mb of disk space.

Selective Symbolic Type-Guided Checkpointing and Restoration for Autonomous Vehicle Repair ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

Restoration success. Both CRIU and SCR can successfully con-

tinue the mission when the checkpointed and resumed software

are identical (V 0 → V 0 in Table 1). However, when the system

was resumed with a patched version of the software, SCR had a

100% success rate but CRIU failed over 75% of the scenarios. In

particular, CRIU only succeeded at restoring after the small patch

that did not affect the actual code part of ArduPilot (V 0 → V 1);
CRIU failed to restore for V 0→ V 2, V 0→ V 3, V 0→ V 4, or when

ArduPilot is patched via APR. In fact, the APR patch that fixes the

Red Team security bug only changes a single line of code, but CRIU

was unable to resume after it was applied. An ✗ denotes situations

in which CRIU failed to resume a new version.

CRIU restoration errors manifested as segmentation faults or

other crashes induced by memory errors. Since CRIU saves memory

exactly “as is”, patches that changed how the software expected

memory to be laid out (e.g., reordering, adding, or removing fields

from critical data structures) led to memory errors in practice. By

contrast, since SCR restores variables and fields symbolically, a

patch that adds a new field Z between old fields A and B will result

in SCR restoring the checkpointed values of A and B but using the

value of Z as initialized when the system is re-launched. This does

not guarantee restoration, but worked for all scenarios considered.

5.2 Annotation Effort
SCR requires the user or developer to annotate mission- or security-

critical data for checkpointing (see Section 3). This is done statically,

at the level of source-level program symbols (i.e., variable or field

names), rather than dynamically, in terms of pointers or addresses

(cf. libckpt [38]). While particular fields or types can be individually

included or excluded, the most common case is to specify a variable,

at which point SCR will recursively traverse type information to

generate checkpointing and restoration code for all information

reachable from that variable (via fields or pointers).

For these experiments, one author was familiar with the ArduPi-

lot project and identified mission-critical data for checkpointing

and restoration, including information such as the current mission

item being executed and the arming status of the vehicle’s motors.

While the V 0 version of ArduPilot and associated libraries used

in these experiments contain over 2,275,000 lines of code in total,

we found that we only needed to inspect 1,963 lines—less than one

tenth of one percent of the code—to annotate 96 variables relevant

to the previously-identified critical state. Our annotation effort was

focused on three structures in the source code: Copter, AP_AHRS
and AP_Mission, which store data related to high-level event loop,

positional awareness, and mission state information.

The annotation burden with SCR is minimized because we lever-

age the existing domain expertise of developers and users. Studies

of code ownership and the role of knowledge in software develop-

ment suggest that experienced developers are often familiar with

the key data, structures, and design in their software [3, 43, 46].

We abstract away the inner workings of our Checkpoint/Restore

mechanism from the required annotations. This corresponds to a

lighter annotation burden than other projects such as ESC/Java [8]

or Liquid Types [48], where annotations can often include difficult-

to-write invariants and pre- and post-conditions. SCR annotations

more closely align with pickling combinators [20] or library-level

serialization interfaces, a familiar interaction to users.

5.3 Experiment Conclusions
In our experiments, SCR’s time overhead was comparable to the

state-of-the-art CRIU technique (slower only by the time required

to restart the software after the patch, and not significantly dif-

ferent otherwise). SCR’s space overhead was significantly lower

than CRIU’s, requiring 290 bytes rather than 820 kilobytes. Most

importantly, SCR was able to successfully resume missions after

deployment of developer- or APR-written patches in 100% of exam-

ined cases, while CRIU only succeeded 36% of the time (i.e., for the

simplest patches). SCR requires manual annotations, but less than

one tenth of one-percent of the program had to be annotated.

6 THREATS TO VALIDITY
We discuss several threats to validity. First, we only evaluated SCR

on one open-source project. Although this AVS software provides

straightforward measurements, the results may not generalize to

all types of software systems. However, ArduPilot is a large, diverse

software ecosystem in an increasingly important area of research.

Second, the annotation burden may vary for different applications.

While ArduPilot is an indicative software system, we do make the

assumption that type-guided annotations can be succinct. This as-

sumption would fail for systems with crosscutting concerns, as in

aspect-oriented programming [21] or for certain functional pro-

gramming languages. Third, although SCR allows the system to

resume after patches, unlike traditional Checkpoint/Restore ap-

proaches, neither approach can handle certain vulnerabilities, such

as information leaks. Finally, SCR, CRIU and similar systems typ-

ically require exclusive access to the data being checkpointed or

restored, which is complicated by threading.

7 CONCLUSIONS
Software systems such as autonomous vehicles face challenges

from software defects, environmental changes, and security attacks.

Failure transparency is one solution that can address software de-

fects or security attacks that result in system failures. This paper

presents a selective checkpoint and restore algorithm that uses

symbolic, type-guided annotations to save only mission-critical

system state in an effort to provide failure transparency in software

systems like AVS. Unlike traditional Checkpoint/Restore solutions,

our approach allows the system to resume from a different version

of the software, so that necessary system repairs (e.g., generated

an automated program repair technique) can be applied to fix soft-

ware bugs between checkpoints and restorations. We evaluated our

algorithm with an open source AVS software package. Compared

to a state-of-the-art baseline, our approach had comparable time

overhead, orders of magnitude lower space overhead, and was able

to restore after complicated patches, providing failure transparency

and system resiliency in autonomous vehicle software.

REFERENCES
[1] J. Ansel, K. Arya, and G. Cooperman. DMTCP: Transparent checkpointing for

cluster computations and the desktop. In IEEE International Symposium on Parallel
& Distributed Processing, pages 1–12, 2009.

[2] T. Ball and S. K. Rajamani. SLIC: A specification language for interface checking

(of C). Technical Report MSR-TR-2001-21, Microsoft Research, 2001.

[3] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu. Don’t touch my

code!: Examining the effects of ownership on software quality. In Foundations of
Software Engineering, pages 4–14, New York, NY, USA, 2011. ACM.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Yu Huang, Kevin Angstadt, Kevin Leach, and Westley Weimer

[4] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated application-

level checkpointing of mpi programs. In ACM Sigplan Notices, volume 38, pages

84–94. ACM, 2003.

[5] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
Computing Surveys (CSUR), 41(3):15, 2009.

[6] Y. Chen, J. S. Plank, and K. Li. Clip: A checkpointing tool for message-passing

parallel programs. In Supercomputing, pages 1–11, 1997.
[7] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus. Automatic repair of buggy

if conditions and missing preconditions with smt. In International Workshop on
Constraints in Software Testing, Verification, and Analysis, pages 30–39, 2014.

[8] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java.

In International Symposium of Formal Methods Europe, pages 500–517, 2001.
[9] L. Gazzola, D. Micucci, and L. Mariani. Automatic software repair: a survey. In

International Conference on Software Engineering, pages 12–19, 2018.
[10] D. Greenfieldboyce and J. S. Foster. Type qualifier inference for Java. In ACM

SIGPLAN Notices, volume 42, pages 321–336. ACM, 2007.

[11] E. Hendriks. Bproc: The beowulf distributed process space. In Supercomputing,
pages 129–136, 2002.

[12] M. Hicks and S. Nettles. Dynamic software updating. Trans. Programming
Languages and Systems, 27(6):1049–1096, 2005.

[13] K. Highnam, K. Angstadt, K. Leach, W. Weimer, A. Paulos, and P. Hurley. An

uncrewed aerial vehicle attack scenario and trustworthy repair architecture. In

Dependable Systems and Networks, pages 222–225, 2016.
[14] R. Hund, C. Willems, and T. Holz. Practical timing side channel attacks against

kernel space aslr. In Security and Privacy, pages 191–205, 2013.
[15] D. Jackson. Alloy: a lightweight object modelling notation. Trans. Software

Engineering and Methodology, 11(2):256–290, 2002.
[16] A. Y. Javaid. Cyber security threat analysis and attack simulation for unmanned

aerial vehicle network. PhD thesis, University of Toledo, 2015.

[17] A. Y. Javaid, W. Sun, V. K. Devabhaktuni, and M. Alam. Cyber security threat

analysis and modeling of an unmanned aerial vehicle system. In Technologies for
Homeland Security, pages 585–590, 2012.

[18] Z. T. Kalbarczyk, R. K. Iyer, S. Bagchi, and K. Whisnant. Chameleon: A software

infrastructure for adaptive fault tolerance. Trans. Parallel and Distributed Systems,
10(6):560–579, 1999.

[19] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection attacks

with instruction-set randomization. In Computer and Communications Security,
pages 272–280, 2003.

[20] A. J. Kennedy. Functional pearl pickler combinators. Journal of Functional
Programming, 14(6):727–739, 2004.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and

J. Irwin. Aspect-oriented programming. In European Conference on Object-
Oriented Programming, pages 220–242. Springer, 1997.

[22] A. Kim, B. Wampler, J. Goppert, I. Hwang, and H. Aldridge. Cyber attack vulner-

abilities analysis for unmanned aerial vehicles. In Infotech@ Aerospace, pages
1–30, 2012.

[23] J. Kodumal and A. Aiken. Banshee: A scalable constraint-based analysis toolkit.

In International Static Analysis Symposium, pages 218–234. Springer, 2005.

[24] O. Laadan and S. E. Hallyn. Linux-cr: Transparent application checkpoint-restart

in linux. In Linux Symposium, volume 159, 2010.

[25] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of

automated program repair: Fixing 55 out of 105 bugs for $8 each. In International
Conference on Software Engineering, pages 3–13, 2012.

[26] F. Long and M. Rinard. Automatic patch generation by learning correct code.

SIGPLAN Notices, 51(1):298–312, 2016.
[27] D. E. Lowell, S. Chandra, and P. M. Chen. Exploring failure transparency and

the limits of generic recovery. In Operating System Design and Implementation,
page 20, 2000.

[28] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus. Automatic

repair of real bugs in Java: A large-scale experiment on the defects4j dataset.

Empirical Software Engineering, 22(4):1936–1964, 2017.
[29] J. A. Marty. Vulnerability analysis of the mavlink protocol for command and

control of unmanned aircraft. Technical report, Air Force Institute of Technology,

2013.

[30] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline program

patch synthesis via symbolic analysis. In International Conference on Software
Engineering, pages 691–701, 2016.

[31] M. Monperrus. Automatic software repair: a bibliography. ACM Computing
Surveys (CSUR), 51(1):17, 2018.

[32] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder. Automatic logging

of operating system effects to guide application-level architecture simulation.

Performance Evaluation Review, 34(1):216–227, 2006.
[33] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: Program

repair via semantic analysis. In International Conference on Software Engineering,
pages 772–781, 2013.

[34] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and implementation of

zap: A system for migrating computing environments. ACM SIGOPS Operating
Systems Review, 36(SI):361–376, 2002.

[35] Pavel Emelyanov. Checkpoint/restore in userspace. In https:// criu.org, 2012.
[36] L. Perkov, N. Pavković, and J. Petrović. High-availability using open source

software. In Information and Communication Technology, Electronics and Micro-
electronics, pages 167–170, 2011.

[37] E. Pinheiro. Epckpt: Eduardo pinheiro checkpoint project, 2004.

[38] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent Checkpointing
under Unix. January 1995.

[39] M. L. Powell and B. P. Miller. Process migration in demos/mp. In Operating
Systems Review, volume 17, 1983.

[40] Y. Qi, X. Mao, and Y. Lei. Efficient automated program repair through fault-

recorded testing prioritization. In International Conference on Software Mainte-
nance, pages 180–189, 2013.

[41] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch plausibility and

correctness for generate-and-validate patch generation systems. In International
Symposium on Software Testing and Analysis, pages 24–36, 2015.

[42] High-assurance cyber military systems (HACMS). https://www.darpa.mil/

program/high-assurance-cyber-military-systems, 2015.

[43] F. Rahman and P. Devanbu. Ownership, experience and defects: A fine-grained

study of authorship. In International Conference on Software Engineering, pages
491–500, 2011.

[44] R. Ramey. boost c++ libraries, 2004.

[45] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. SWIFT:

Software implemented fault tolerance. In Code Generation and Optimization,
pages 243–254, 2005.

[46] P. N. Robillard. The role of knowledge in software development. Communications
of the ACM, 42(1):87–92, Jan 1999.

[47] M. Roesch et al. Snort: Lightweight intrusion detection for networks. In Lisa,
volume 99, pages 229–238, 1999.

[48] P. M. Rondon, M. Kawaguchi, and R. Jhala. Low-level liquid types. In Sigplan
Notices, volume 45, pages 131–144, 2010.

[49] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa, and S. Jiang. Current practice and a

direction forward in checkpoint/restart implementations for fault tolerance. In

Parallel and Distributed Processing Symposium, 2005.

[50] S. Sankaran, J. M. Squyres, B. Barrett, V. Sahay, A. Lumsdaine, J. Duell, P. Hargrove,

and E. Roman. The lam/mpi checkpoint/restart framework: System-initiated

checkpointing. J. High Performance Computing Applications, 19(4):479–493, 2005.
[51] F. B. Schneider. Byzantine generals in action: Implementing fail-stop processors.

Trans. Computer Systems, 2(2):145–154, 1984.
[52] M. E. Segal and O. Frieder. On-the-fly programmodification: Systems for dynamic

updating. IEEE Software, 10(2):53–65, 1993.
[53] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format string

vulnerabilities with type qualifiers. In USENIX Security Symposium, pages 201–

220, 2001.

[54] D. P. Shepard, J. A. Bhatti, T. E. Humphreys, and A. A. Fansler. Evaluation of smart

grid and civilian uav vulnerability to gps spoofing attacks. In Radionavigation
Laboratory Conference Proceedings, 2012.

[55] J. M. Spivey and J. Abrial. The Z notation. Prentice Hall Hemel Hempstead, 1992.

[56] V. L. Thing and J. Wu. Autonomous vehicle security: A taxonomy of attacks and

defences. In Cyber, Physical and Social Computing, pages 164–170, 2016.
[57] Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated testing of deep-neural-

network-driven autonomous cars. In International Conference on Software Engi-
neering, pages 303–314, 2018.

[58] C. Timperley and C. Le Goues. Darjeeling: a language-agnostic search-based

program repair tool. In https://github.com/squaresLab/Darjeeling, 2020.
[59] R. van Tonder and C. Le Goues. Static automated program repair for heap

properties. In International Conference on Software Engineering, pages 151–162,
2018.

[60] Vmadump. https://bproc.sourceforge.net, 2002.

[61] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. Kintala. Checkpointing and

its applications. In Fault-Tolerant Computing, pages 00–22, 1995.
[62] W. Weimer, S. Forrest, M. Kim, C. Le Goues, and P. Hurley. Trusted software

repair for system resiliency. In 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops, pages 238–241, 2016.

[63] W.Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches

using genetic programming. In International Conference on Software Engineering,
pages 364–374, 2009.

[64] A. M. Wyglinski, X. Huang, T. Padir, L. Lai, T. R. Eisenbarth, and K. Venkatasub-

ramanian. Security of autonomous systems employing embedded computing

and sensors. IEEE Micro, 33(1):80–86, 2013.
[65] H. Zhong and J. Nieh. Crak: Linux checkpoint/restart as a kernel module. Tech-

nical report, Technical Report CUCS-014-01, Department of Computer Science,

Columbia University, 2001.

https://criu.org
https://www.darpa.mil/program/high-assurance-cyber-military-systems
https://www.darpa.mil/program/high-assurance-cyber-military-systems
https://github.com/squaresLab/Darjeeling
https://bproc.sourceforge.net

	Abstract
	1 Introduction
	2 Related work
	2.1 Checkpoint/Restore Systems
	2.2 Security Assurance and AVS
	2.3 Automated Program Repair
	2.4 Annotations

	3 Automatic Selective Checkpoint and Restore Generation
	3.1 SCR serialization and deserialization
	3.2 Annotations

	4 System & Experimental Design
	4.1 Specimen System
	4.2 Indicative Use Case
	4.3 Experimental Design

	5 Experimental Results
	5.1 Restoration Success and Performance
	5.2 Annotation Effort
	5.3 Experiment Conclusions

	6 Threats to validity
	7 Conclusions
	References

