
PBP: Post-training Backdoor Purification for
Malware Classifiers

Dung Thuy Nguyen, Ngoc N. Tran, Taylor T. Johnson, Kevin Leach
Vanderbilt University, Nashville, TN, USA

{dung.t.nguyen, ngoc.n.tran, taylor.johnson, kevin.leach}@vanderbilt.edu

Abstract—In recent years, the rise of machine learning (ML)
in cybersecurity has brought new challenges, including the
increasing threat of backdoor poisoning attacks on ML malware
classifiers. These attacks aim to manipulate model behavior
when provided with a particular input trigger. For instance,
adversaries could inject malicious samples into public malware
repositories, contaminating the training data and potentially
misclassifying malware by the ML model. Current countermea-
sures predominantly focus on detecting poisoned samples by
leveraging disagreements within the outputs of a diverse set
of ensemble models on training data points. However, these
methods are not suitable for scenarios where Machine Learning-
as-a-Service (MLaaS) is used or when users aim to remove
backdoors from a model after it has been trained. Addressing this
scenario, we introduce PBP, a post-training defense for malware
classifiers that mitigates various types of backdoor embeddings
without assuming any specific backdoor embedding mechanism.
Our method exploits the influence of backdoor attacks on the
activation distribution of neural networks, independent of the
trigger-embedding method. In the presence of a backdoor attack,
the activation distribution of each layer is distorted into a mixture
of distributions. By regulating the statistics of the batch normal-
ization layers, we can guide a backdoored model to perform
similarly to a clean one. Our method demonstrates substantial
advantages over several state-of-the-art methods, as evidenced
by experiments on two datasets, two types of backdoor methods,
and various attack configurations. Our experiments showcase that
PBP can mitigate even the SOTA backdoor attacks for malware
classifiers, e.g., Jigsaw Puzzle, which was previously demonstrated
to be stealthy against existing backdoor defenses. Notably, our
approach requires only a small portion of the training data
— only 1% — to purify the backdoor and reduce the attack
success rate from 100% to almost 0%, a 100-fold improvement
over the baseline methods. Our code is available at https:
//github.com/judydnguyen/pbp-backdoor-purification-official.

I. INTRODUCTION

Malware classification has been witnessed dramatic ad-
vancements, particularly with the integration of Deep Neu-
ral Networks (DNNs) to tackle the increasing complexity
and volume of modern malware corpora [1, 2, 3]. Malware
ensembles—including viruses, worms, trojans, and spyware—
pose formidable risks to individuals and corporate institutions
[4, 5]. The limitations of conventional detection methods, such
as signature-based and heuristic techniques, in handling large-
scale data and evolving malware variants have necessitated a

shift toward more sophisticated Machine Learning (ML) and
Deep Learning (DL) methodologies [6, 7, 8]. Malware detec-
tion techniques based on ML/DL can model more complex
patterns of malware data than classical signature-based ones.
This allows them to detect better new variants of existing
malware or even previously unseen malware [9].

Integrating DNNs into malware detection systems has
significantly advanced the field but has also introduced sev-
eral threats. One notable vulnerability is the backdoor at-
tack, [10, 11, 12, 13]. which involves an adversary discreetly
embedding a harmful pattern or trigger within a small pro-
portion of training samples to manipulate the behavior of the
final model. When the model encounters this trigger during
inference, it will misclassify the input, potentially leading to
security breaches. These attacks subtly corrupt the model,
often going undetected until the model systematically fails
under specific conditions designed by the attacker, thereby
undermining the integrity and reliability of the entire malware
detection process [14, 15, 11]. . Recently, research has focused
on investigating the vulnerability of malware classifiers to
backdoor attacks [14, 16, 10, 17]. The general objective of
these attack methods is to protect a subset of malware samples
and bypass the detection mechanisms of malware classifiers.
This emerging threat poses concerns similar to those observed
in other machine learning domains and is gaining substantial
attention in the malware detection community, underscoring
the need for robust countermeasures [18].

To counter such threats, researchers have explored defense
methods with backdoor attacks for malware classifiers. While
these defenses show their effectiveness in mitigating backdoor
attacks in machine learning models, the effectiveness of these
countermeasures in the specific context of malware classifiers
has been limited [14, 16]. For example, the study by Severi et
al. [14] demonstrates that even anomaly detection methods [19,
20] are not sufficient to fully protect malware classifiers against
explanation-guided backdoor attacks. More recently, Yang et
al. [16] have shown that their attack can bypass state-of-the-art
defenses such as Neural Cleanse [21] and MNTD [22]. These
findings highlight the need for more robust countermeasures
tailored to the malware detection . Another limitation is that
these defenses often rely on assumptions about the backdoor,
requiring intervention with all training data [11]. Therefore,
they cannot be applied to post-defense circumstances, such
as fine-tuning or backdoor removal in Machine Learning as
a Service (MLaaS). A post-defense solution is essential when
defenders acquire pretrained or publicly available backbone
models for malware detection, either from third-party vendors
or open-source repositories. When analysts discover malware
samples mislabeled as safe, fine-tuning the model with small

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240603
www.ndss-symposium.org

ar
X

iv
:2

41
2.

03
44

1v
3

 [
cs

.L
G

]
 1

0
D

ec
 2

02
4

https://github.com/judydnguyen/pbp-backdoor-purification-official
https://github.com/judydnguyen/pbp-backdoor-purification-official

datasets serves as a practical and cost-effective alternative to
full-scale retraining.

To overcome the limitations of existing defenses, we intro-
duce a post-training defense named PBP to counter backdoor
attacks in malware classifiers, i.e., reducing the attack suc-
cess rate from 100% to almost 0% and achieving 100-fold
improvement. The core intuition behind PBP is based on the
observation that backdoor neurons exhibit distinct activation
patterns when processing backdoored versus clean samples.
This distributional drift forms the basis of PBP’s two-phase
backdoor purification strategy. In the first phase, a neuron mask
is generated by training a noise model on clean data, identi-
fying neurons whose activation patterns deviate significantly
in backdoored samples. This leverages clean data to discern
normal activation patterns and detect backdoor neurons. The
second phase applies a masked gradient optimization process,
reversing the gradient sign of the identified neurons during
fine-tuning. This mitigates the influence of backdoor neurons,
ensuring the model correctly classifies triggered samples as
malicious. In this work, we focus on two state-of-the-art back-
door attacks for malware classifiers: Explanation-guided [14]
and Jigsaw Puzzle [16]. We evaluate these attacks on two
public datasets: EMBER [23], a Windows Portable Executable
dataset, and AndroZoo [24], an Android malware dataset. The
main contributions of our work can be summarized as follows:

• We demonstrate the activation’s distribution shift phe-
nomenon caused by backdoor attacks in malware
classifier models, leading to insights for mitigations.

• We introduce PBP, the first post-training defense
against backdoor attacks in malware classification,
using only fine-tuning with a portion of clean data.
It operates independently of training and requires no
prior knowledge of attack strategies, ensuring versa-
tility and adaptability to various attack methods.

• We conduct extensive experiments to demonstrate our
method’s SOTA performance with different settings
regarding attack methods, datasets, fine-tuning data
size, data poisoning rate, and model architecture.

• We provide insights into model and defense behaviors
under various attack strategies, highlighting the effec-
tiveness of our method within the malware classifica-
tion domain and its potential applicability to broader
domains such as Computer Vision.

II. BACKGROUND

This section provides background on backdoor attacks
and defenses against malware classifiers. We start with high-
level descriptions of emerging threats of backdoor attacks on
machine learning (ML) systems and classical defenses against
them in Sec. II-A and Sec. II-B, respectively. In Sec. II-C, we
discuss how backdoor attacks work on Deep Neural Networks
(DNN)-based malware classifiers and their countermeasures.

A. Backdoor Attacks

The emergence of outsourcing model training and MLaaS
has led to emergent weaknesses [25, 26]. Backdoor attacks [27,
28, 26, 29, 30, 31], or trojan attacks, are prevalent training-
phase adversarial attacks that primarily target DNN classifiers.

In general, backdoor attacks can be formulated as a multi-
objective optimization problem [32], where the attacker seeks
to optimize the following objectives:

θ∗ = min
θ

E(x,y)∼DL(fθ(x), y) +E(x,y)∼DL(fθ(φ(x)), τ(y)), (1)

in which fθ is the victim model f parameterized by θ,
D is the set of training data for the main task, and (x, y)
are sample-label pairs uniformly drawn from D. The sam-
ple components x are poisoned via the application of some
function φ, which can be a non-transform function [13] or
a perturbation function [33, 34]; and the label counterparts y
are altered by another corresponding function τ . Technically,
the adversary’s objective is to manipulate the model such
that, for these poisoned samples φ(x), it returns distorted
outputs τ(y) instead of y. The function L in the expression
L(fθ(φ(x)), τ(y)) represents a loss function that measures the
discrepancy between the predicted output fθ(φ(x)) and the
true output τ(y) for a given input sample (x, y). To ensure
stealthiness, the performance of the model on non-backdoored
samples remains unchanged. In particular, the model θ∗ should
give correct outputs for clean samples x. Backdoor attacks are
particularly concerning as they can be stealthy and difficult to
detect, making them a substantial threats to deploy secure and
reliable DNN models.

B. Backdoor Countermeasures

Developing robust techniques to identify and mitigate the
various types of backdoor attacks remains an important chal-
lenge in machine learning security research. In contrast to the
attack scenario, the multi-objective formulation for backdoor
defense is defined as:

θ∗ = min
θ

E(x,y)∼DL(fθ(x), y)− λE(x,y)∼DL(fθ(φ(x)), τ(y)),
(2)

where the first term also minimizes the loss on clean data
samples, but the second one maximizes the loss on backdoored
data samples (note the negative sign). The tradeoff between
preserving clean data performance and backdoor removal can
be controlled by a hyperparameter, λ. To measure how well
a backdoor defense scheme performs, we employ these two
metrics:

Definition 1 (Clean Data Accuracy (C-Acc)). The C-Acc is
the proportion of clean test samples containing no trigger that
is correctly predicted to their ground-truth classes.

Definition 2 (Attack Success Rate (ASR)). The ASR is the
proportion of clean test samples with stamped triggers that is
predicted to the attacker’s targeted classes.

Definition 3 (Defense Effectiveness Rating (DER) [35]).
DER ∈ [0, 1] evaluates defense performance considering both
the changes in C-Acc and ASR. It is defined as follows:

DER = [max(0,∆ASR)−max(0,∆C-Acc) + 1]/2

For successful backdoored model fθbd
, the CDA should

be similar to the clean model fθcl , while the ASR is high
backdoored models can achieve an ASR that is close to
100% usually under outsource attributing to the full control
over the training process and data. Backdoor defenses can
be deployed at different stages of the deep learning pipeline:
during the classifier’s training phase, post-training, or during
inference. Each scenario assumes a different defender role and

2

capabilities. The first approach aims to produce a backdoor-
free classifier from a potentially poisoned training set. Existing
defenses focus on detecting and removing suspicious sam-
ples and identifying trustworthy samples [36, 37], and other
works focus on modifying the training process for enhancing
robustness [38, 39]. The second approach instead aims to
remove the potential backdoor features in a well-trained model
using clean data. The defender first identifies the compromised
neurons and then prunes or unlearns them [40, 41, 42], or
others propose to “unlearn” the backdoor mapping from the
victim model [43, 44]. The remaining approach aims to detect
test samples with a backdoor pattern and potentially correct
decisions. Approaches are similar to post-training defenses,
using input perturbation, suspicious region identification, or
latent representation modeling [45, 36].

C. Backdoor Attacks and Countermeasures in Malware Clas-
sifiers

Backdoor attacks for malware classifiers. In the backdoor
attack setting, the adversary is assumed to have only partial
control of the training process. Specifically, in malware classi-
fication, recent work assumes clean-label backdoor attacks [10,
14, 16] where the adversary has no control over the labeling of
poisoned data. In these studies, the authors optimize a trigger
or watermark within the feature and problem space of malware,
which, when integrated with malware samples, activates the
backdoor functionality. Specifically, the backdoored sample set
has the form of Dbd = (φ(x), y) instead of Dbd = (φ(x), τ(y))
as normal label-flipping attacks in ML [28, 46, 21, 33].
The optimized trigger is normally conducted in a model-
agnostic fashion manner via feature explanations for model
decision [14, 10] and alternative optimization [16].

The high-level idea of these backdoor attack strategies is
to generate a trigger function φ, known as a watermark, to
combine with the targeted samples. Due to the characteristics
of the targeted samples, the attack can be family-targeted
or non-family-targeted. For example, Severi et al. [14] use
the trigger to distort the model’s prediction on any malware
samples that carry the trigger to be “benign.” On the other
hand, Yang et al .[16] only target the samples belonging to a
specific malware family, and the trigger is designed for this
family only and cannot activate the backdoor if it is combined
with other families. We plot the poisoned samples generated
by these two backdoor categories in Fig. 1. As presented, non-
family-targeted poisoned samples are manipulated from the
set of all other malware families, while in a family-targeted
setting, these poisoned samples belong to a separate malware
family that the adversary wants to protect.

(a) Non-family-targeted backdoor (b) Family-targeted backdoor

Fig. 1: t-SNE [47] representations of family-targeted and non-
family-targeted backdoor attacks.

Backdoor defenses for malware classifiers. A popular
defense mechanism against backdoor attacks for malware
classification is adversarial training [48]. This approach tries to
stabilize the model’s performance on poisoned data by training
it with adversarial examples, with or without the original
training examples. However, this method inevitably introduces
significant additional cost for generating adversarial examples
during training. Another approach leverages various heuristics
to remove adversarial samples from the training dataset. This
way, any manipulations committed by the adversaries can be
undone before the samples are sent to the PE malware detector.
However, these empirical defenses usually only work for very
few adversarial attack methods, making them usually attack-
specific [49]. Moreover, these methods require preemptive
training control of the original model, which does not apply
to the case of Machine Learning as a Service (MLaaS). When
we buy or acquire a trained poisonous model, we need a
purification scheme that can repair the poisoned model and
ensure the adversarial vulnerability is no longer present.

To address this concern, we propose to use fine-tuning
(FT) method since it has been adopted to improve models’
robustness against backdoor attacks [40, 12] and can be
combined with existing training methods and various model
architectures. Additionally, FT methods require less computa-
tional resources, making them one of the most popular transfer
learning paradigms for large pre-trained models [50, 51, 52].
However, FT methods have not been sufficiently evaluated
under various attack settings, particularly in the more practical
low poisoning rate regime. To the best of our knowledge, there
has been no prior work on purifying backdoors during fine-
tuning for malware classification.

III. METHODOLOGY

In this section, we present PBP, an approach to purifying
classification models that have been poisoned. First, we discuss
our insight into the activation distribution of backdoor neurons
during training (Section III-A). Second, we discuss the threat
model and goals of PBP (Section III-B). Third, we present a
detailed description of PBP (Section III-C).

A. Backdoor Neurons

When a classifier has been poisoned with a backdoor
attack, there is a specific subset of neurons that play a
substantial role in exhibiting the backdoor behavior [53, 54].
The attack success rate will be dramatically lowered if a
portion or all of these backdoor neurons are pruned from the
infected model [53, 41]. Leveraging this insight, we investigate
the activation distribution of the model when subjected to
backdoor attacks. In this subsection, we perform an empirical
analysis to examine the distribution of the backdoor neurons
when a backdoor is introduced into the model. We begin with
a definition of backdoor neurons.

Definition 4 (Backdoor Neurons). Given a model f and a
poisoning function φ, the backdoor loss on a dataset D is
defined as:

Lbd(fθ) = E(x,y)∼D [DCE(y, fθ(φ(x))]

where DCE denotes the cross entropy loss.

Definition 5 (Backdoor Sensitivity). Given a model f , the
index of a neuron (l, k) and the backdoor loss Lbd, the

3

(a) Clean Model (b) Backdoored Model (c) Fine-tuned Model

Fig. 2: Model activation of backdoor neurons on targeted malware samples with and without a trigger.

sensitivity of that neuron to the backdoor is defined as:

ζ(f, l, k) = Lbd(f)− Lbd(f−{(l,k)}),

where f−{(l,k)} is the network after pruning the k-th neuron
of the l-th layer.

Based on these definitions, a neuron with larger ζ has more
importance to backdoor functionality. Although this definition
does not consider the joint effect of neurons that may lead
to the misidentification of important neurons [54, 55], it is
sufficient for our analysis. Using this definition, we can filter
out backdoor neurons in an infected model and analyze their
behaviors in both the clean version and backdoored modes.

Settings. We explore backdoor neurons by analyzing their
activation, which is defined as the output of a neuron under
a certain input. This reflects the sensitivity of a neuron with
a given input and directly relates to the final prediction. We
trained a backdoored model following Severi et al. [14] using
the EmberNN [14] architecture with four Dense layers. Con-
currently, we trained a comparative clean model with the same
setting. Specifically, for the backdoored model, we injected
a backdoor trigger pattern into a subset of the training data,
following the procedure described in Severi et al. [14]. The
clean model was trained on the original, unmodified dataset.
Both models were trained until convergence using the same
hyperparameters and optimization settings. We observe the
corresponding sensitivity on the triggered data and select the
top 20% of the neurons whose highest backdoor sensitivity
is defined above each layer for further investigation on their
investigation. Using this set of backdoor neurons, we stored the
activation of these neurons on the clean, backdoored, and fine-
tuned models, given different categories of inputs including
malware samples with and without the backdoor trigger, and
plotted the result on Fig. 2.

Empirical results. Fig. 2 shows that, on triggered samples,
backdoor neurons generally show a distribution deviation from
the original activation on non-triggered samples and after the
trigger is combined with these samples. From Fig. 2a, a clean
model does not show a substantial distribution deviation on
the normal malware and the malware added the trigger. Mean-
while, the backdoored model in Fig. 2b undergoes substantial
distribution deviation. Given the poisoned data, this deviation
accumulates with each layer, causing the victim model to in-
creasingly diverge from benign activations, ultimately leading
to incorrect target labeling when predicting a poisoned sample.
The ultimate goal after training is to navigate the backdoor
model’s activation distribution so that there is no substantial
drift, as shown in Fig. 2c.

B. Threat Model and Problem Formulation

A large fraction of the backdoor attack literature [56, 53,
42, 57] assumes the threat model of “Outsourced Training
Attack,” in which the adversary has full control over the
training procedure and the end user is only allowed to check
the training using a held-out validation dataset. However,
adversaries introducing backdoor attacks ensure that the victim
model performs well on clean data, making the reliance on
a held-out validation dataset insufficient for verifying the
model’s trustworthiness. This presents a strict assumption for
users regarding the safe use of DNN models. To address this
challenge, we adopt a defense setting where the defender
acquires a backdoored model from an untrusted source and
assumes access to a small subset of clean training data for
fine-tuning [58, 44]. Backdoor erasing aims to eliminate the
backdoor trigger while maintaining the model’s performance
on clean samples. This approach is particularly relevant when
training data is no longer fully accessible due to retention or
privacy policies. Additionally, users of third-party ML services
may inadvertently purchase backdoored models and seek to
purify them using their data. [16, 14]

Attacker’s goals. Similar to most backdoor poisoning set-
tings, we assume the attacker’s goal is to alter the training
procedure, specifically the malware sample set, such that
the resulting trained backdoored classifier, fbd, differs from
a cleanly trained classifier fcl. An ideal fbd has the same
response to a clean set of inputs x as fcl, whereas it generates
an adversarially chosen prediction, τ(y), when applied to
backdoored inputs, φ(x). These goals can be summarized as:

fbd(x) = fcl(x); fbd (φ(x)) = τ(y) ̸= y.

Specifically, we use class 0 for benign binaries and class
1 for malicious. Given the opponent is interested in making
a malicious binary appear benign, the target result is always
τ(y) ≡ 0. Additionally, we also consider family-based mal-
ware classification, in which the adversary aims to manipulate
the surrogate model to classify the specific samples into one
targeted malware file. To make the attack undetectable, the
adversary wishes to minimize both the poisoning rate and the
footprint of the trigger (i.e., the number of modified features).

Defender’s goal. As opposed to the attacker goals, the
defender, i.e., the model trainer who has full access to the
internal architecture of the target model and a limited set of
benign fine-tuning data, denoted as Dft, aims to achieve two
goals. The first goal is to erase the backdoors from fbd and
make the purified model perform correctly even with triggered

4

randomly
initialized model

fine-tuning
data 𝒟!"

backdoor
modelℬ#! 	≔ 	 𝜇 ℐ#!

$, 𝜎% ℐ#!
$ℬ#& 	≔ 	 𝜇 ℐ#&

$, 𝜎% ℐ#&
$

ℒℬ ≔ 𝑆𝐼𝑀(ℬ#& , ℬ#!)
Hessian trace

fine-tuned
model

!

"

fine-tuning
data 𝒟!"

reversable
neurons

normal
neurons

𝜃 = 𝜃 − 𝜂 ⊙𝒎⊙
𝜕ℒ
𝜕𝜃

𝒎 𝑘 = −1;𝒎 𝑖 = 1

Neuron mask generation Activation-shift Fine-tuning

predicted:
“Goodware”

trojan malware
with trigger

predicted:
“trojan”

Trainingℬ: batch-norm statistic 𝒎: neuron mask Inference

Fig. 3: The overall description of the proposed method. PBP includes two phases: (i) Neuron mask generation and (ii) Activation-
shift Fine-tuning. In the first phase, we initialize a noise model fθ̂ and train a new model by using clean data using the objective
functions as aligning the neuron activation to the backdoor model fθ0 , determining the most important neurons for this task using
Hessian trace during training. In the later phase, the masked gradient optimization process is applied by reversing the gradient
sign of the masked neuron (in red). The fine-tuned model is expected not to predict triggered sample, i.e., malware as “benign”.

inputs. To maintain utility, the second goal is to maximally
retain the model’s performance on normal inputs during the
purifying process. In this work, we also adopt the assumptions
to obtain the objective from Eqn. 2 from related post-training
defenses as follows:

1) The defender has no information about the back-
door trigger available nor the specific adversary’s
accessibility including the poisoning rate and how
the backdoor is inserted. This assumption is relaxed
by many existing post-training detectors by making
assumptions about the backdoor pattern type, or how
human imperceptibility is achieved. However, we
strictly make no assumptions about the backdoor
trigger/watermark that may be inserted.

2) The defender has no access to the training procedure,
and cannot acquire the full training dataset to retrain
a new model. The defender is a user of the classifier
or of a legacy system who has the access to a
trained/backdoored model.

3) The defender can independently collect or access
a small, clean dataset that is representative of the
training data, e.g., samples from all classes (positive
and negative), and can combine it with a portion
of the training data if they have access to it. This
assumption aligns with most post-training backdoor
defenses [59, 57].

Given these assumptions and constraints, the defender faces
substantial challenges in effectively removing the backdoors
while preserving the model’s original performance. The key is
to develop a purification technique that can reliably identify
and neutralize the backdoor neurons without degrading the
model’s utility on clean data. Given these objectives, we define
Backdoor Purification as follows:

Definition 6 (Backdoor Purification). Given a backdoored
model fθ0 which is trained on D = Dc ∪ Dbd such that:

E(x,y)∼DL(fθ(x), y) ≤ LBc,

and
E(x,y)∼Dbd

L(fθ(φ(x)), τ(y)) ≤ LBbd,

the backdoor purification process uses a subset Dft to fine-
tune model fθ0 such that the final model θT :

E(x,y)∼Dc
L(fθT (x), y) ≤ ϵc,

where ϵc is a small value indicating high accuracy on clean
data; and

E(x,y)∼Dbd
L(fθT (φ(x)), τ(y)) ≥ ϵbd,

where ϵbd is a value indicating that the model is robust against
the backdoor trigger.

C. PBP Approach

In this subsection, we discuss the key ideas behind PBP,
which consists of two steps: (i) neuron mask generation and
(ii) activation-shift fine-tuning.

1) Neuron Mask Generation: Motivated by the observation
of activation drift, the key insight is that correcting this
deviation could effectively mitigate backdoor effects. In this
step, we first train a model, i.e., θ̃, from scratch to realign the
activation of the new model with that of the backdoored model,
θ0, then we find the backdoored neurons Nm by analyzing the
gradient trace ∇θL during this training procedure. It is worth
noting that, this procedure does not output the new fine-tuned
model to be used as-it-is since the defender does not have
enough data to train a model from scratch. Instead, we want
to observe how a clean model changes to match and mimic the
behavior of the backdoored one. From that, we detect the most
important neurons leading this change and consider them as
potential backdoor neurons contributing to the reconstruction
of backdoor function.

Assume model f has total of L Batch Normalization
(BN) layers. Each BN layer records the running mean and
variance of the input during training (which includes both clean
samples and adversarially poisoned samples), denoted as B =

5

{µ̂l
i, σ̂

2l
i |i = 1, . . . , n}. During retraining step, when a batch of

inputs Il from the previous layer is provided, we can calculate
their mean and variance, denoted as {µl

i(Il), σ2l
i (Il)|i =

1, . . . , n}. Our objective is to guide the clean model to behave
as if it is processing both clean and backdoored data by
ensuring that the input to each layer matches the corresponding
mean and variance statistics recorded in the BN layers of the
backdoored model. By aligning these internal distributions,
we effectively force the clean model to mimic the internal
dynamics of the original model, thereby reconstructing the
embedded backdoor function. To achieve this objective, we
use two loss terms namely, clean loss LCE and alignment loss
Lalign, where LCE is used as achieving benign task and Lalign

is used to achieving the backdoored task.

First, Lce is the cross-entropy loss between model output
fθ̃(x) and the true label y, i.e., LCE = −

∑C
i=1 yi log(fθ̃(x)).

We then define Lalign as a layer-wise activation alignment
objective [60, 61, 54, 62], which is widely used in knowledge
distillation tasks. Let θn

L represent the weights of the l-th
block that contains a BN layer and l ∈ {1, . . . , n} in the
original backdoored model, and θ̃

l

n denote the weights in the
corresponding layer of the new model. Using Il to represent
the batch of inputs for the l-th layer, the activation alignment
objective can be formulated as:

Lalign =

n∑
l=1

||µ(θl
oIl)− µ(θ̃

lIl)||2 + ||σ2(θl
oIl)− σ2(θ̃

lIl)||2,

(3)
where µ and σ are the batch-wise mean and variance estimates
corresponding to the output of the lth layer and the ∥ · ∥2
operator denotes ℓ2 norm calculations. The goal of this loss
term is to minimize the L2 distance between the means and
variances of the activations in the original backdoored model
and the new model, layer by layer. To this end, the overall
objective for this step is represented as:

Lre = Lce + α ∗ Lalign, (4)

When a newly initialized model θ̃ is trained on this objec-
tive, this model will be optimized to achieve two objectives at
the same time, which are learning the original benign task, i.e.,
classifying malware samples; and aligning the activations on
the backdoored samples as the victim model. Intuitively, the
above objective learns the main task of the malware classifier
from scratch while self-implanting the backdoor inserted in
fθ0 . The hyper-parameter α term in Eq. 4 is to bound the
alignment loss added Lalign and void overfitting.

Important neuron mask generation. To achieve dual objectives
of backdoor purification, we need to focus on erasing behaviors
caused by a set of backdoor neurons instead of the whole
network. By scrutinizing the changes in neurons during the
retraining phase above, we can find these neurons using the
sparse nature of NNs. Indeed, recent research has discovered
the sparse nature of gradients in stochastic gradient descent
(SGD), which means that during the training process, only a
small number of coordinates are updated [63, 64]. This charac-
teristic of SGD highlights that most updates are concentrated
in a limited subset of parameters. In our work, we leverage the
observation of the trace of gradients during training to identify
important neurons for a training task. Empirically, the majority
of the ∥·∥2 norm of the training gradient is contained in a very
small number of coordinates, which exploits the sparse nature

of gradients in SGD [63, 65]. Specifically, for each layer in
the neural network, we want to find the top −K coordinates
whose gradient has the highest magnitude:

Nm = argmaxk∥∇θLre(θ̃)∥2,

where ∇θL(θ̃) is the gradient of the loss function L with
respect to the model parameters θ at the current point θ′,
and argmaxk returns the indices of the k largest values. By
computing the ∥ · ∥2 norm of the gradient for each coordinate
(i.e., each neuron or weight), we can identify the top−K coor-
dinates with the largest gradient magnitudes. These coordinates
correspond to the neurons that have the highest impact on the
loss function and are therefore considered the most important
for the learning task with the objective of Eqn. 4. In other
words, these neurons are the most important ones for aligning
the activation of the new model with the backdoored one while
achieving clean accuracy, i.e., achieving dual objectives of a
backdoor attack in Def. 1. By suppressing neurons associated
with the backdoor function, the neuron mask guides the erasing
process to focus on the cause of the backdoor while ensuring
that the remaining neurons still provide accurate predictions
on clean data, maintaining the model’s utility.

2) Activation-shift Model Fine-tuning: To mitigate the
backdoor in an input model, we first conduct model weight
perturbation before starting the fine-tuning procedure. This
step aims to perturb the model’s weights, establishing a new
starting point that forces significant updates throughout the
network toward the optimum based on the objective functions.
Moreover, this step is considered as an “initialization” similar
to fine-tuning methods to avoid bias and influence from the
previous trained model. This method is widely used in the
literature to reduce the effect of adversarial attacks [66, 67, 41],
since perturbing the weight of the model also results in a
change in the prediction of the model. We rigorously add
Gaussian noise to perform this step:

θ0 = θ0 +N (0, σ2I), (5)

where θ0 are the model parameters of the backdoored model,
and N (0, σ2I) is a Gaussian noise term with zero mean and
covariance σ2I , and where I is the identity matrix. Previous
studies have shown that adding Gaussian noise can effectively
disrupt adversarial attacks, making it a robust choice for this
application [66, 67, 41]. Unlike the relatively large noise
required for differential privacy, our goal is not privacy but
rather the prevention of attacks. Therefore, we add a small
amount of noise that is empirically sufficient to limit the
success of attacks without significantly compromising the
model’s performance. This approach aims to mitigate the
backdoor effect introduced by the adversary. After this step,
the fine-tuned model θ0 will require substantial updates during
fine-tuning to align with the original model. However, we
observe that, despite using only clean data for fine-tuning,
the model often converges back to the backdoored function,
a phenomenon consistently seen across various fine-tuning
methods. To counter this, the applied perturbation disrupts the
backdoor-related neurons, forcing the model to make addi-
tional adjustments to regain its performance. This disruption is
crucial, as it lays the groundwork for the next step: reversing
specific parameter updates in the backdoored neurons to fully
neutralize the backdoor effect.

6

Algorithm 1: PBP
Input : Fine-tuning data Dft, initial backdoor model θ0, total

iteration T , pre-finetune total iteration T ′, pre-finetune
learning rate η′, learning rate η.

Output : The fine-tuned model θ̂ after T fine-tuning iterations;
1 /∗ Neuron mask generation ∗/
2 Initialize θ̃;
3 for i ∈ {1 . . . T ′} do
4 for batch(x, y) ∈ Dft do
5 Lalign(x, θ0) ▷ calculate alignment loss using Eq. 3;
6 Lre = Lce

(
fθ̃ (x) , y

)
+ α ∗ Lalign;

7 θ̃ = θ̃ − η′ · ∂Lre

∂θ̃
;

8 end
9 end

10 Nm = argmaxk∥∇θLre(θ̃)∥2;
11 /∗ Activation-shift fine-tuning ∗/
12 m := [−1, 1]|θ̃|, where mi = −1 if i ∈ Nm else 1;
13 θ0 = θ0 +N (0, σ2I);
14 for iteration t in [1, . . . , T] do
15 for batch (x,y) in Dft do

16 θt = θt−1 − η ⊙ ∂Lce(fθ̃(x),y)
∂θt

;
17 end
18 if t mod 2 = 1 then

19 θt = θt−1 − η ⊙m⊙ ∂Lce(fθ̃(x),y)
∂θt

;
20 end
21 end
22 return θT

We erase the backdoor function from model f by reversing
the gradient direction of the backdoor neurons by altering
the signs of the corresponding updates while keeping the
updates from the remaining coordinates. For every dimension
belonging to Nm, the learning rate is multiplied by −1,
effectively maximizing the loss on that dimension instead. This
process can be described mathematically as follows:

mθ,i =

{
1, i /∈ Nm

−1, otherwise
(6)

The model is then updated in each iteration using:

θt+1 = θt − η ⊙m⊙
∂Lce

(
fθ̃ (x) , y

)
∂θt

, (7)

where mθ,i is a masking vector that flips the sign of the
gradient update for the important neurons, and η is the learning
rate. For dimensions where the neuron is important in aligning
batch-norm statistics with the backdoored model, we move in
the direction of the gradient, thereby attempting to maximize
the loss. For other dimensions, we follow the negative gradient
and attempt to minimize the loss as usual. The intuition behind
this step is to strategically influence the gradient updates. By
projecting the gradient updates only onto the coordinates that
are not critical for aligning the fine-tuned model’s activation
distribution with that of the backdoored model, we effectively
disrupt the backdoor trigger while preserving the model’s
performance on the main task. This approach ensures that
the neurons associated with the backdoor task are updated in
an unlearning manner, thereby mitigating the threat without
compromising the overall accuracy and functionality of the
model. However, keeping this masked gradient on every it-
eration will introduce degradation on the benign task due to
the connection between all neurons. Therefore, PBP uses an
alternative optimization strategy (lines 15-24 Algo. 1), where

The full algorithm is presented in Algo. 1. We further provide
the proof of convergence followed Theorem 1 for PBP and
leave all proofs of theoretical development in the Appendix.

Theorem 1. Let θ0 be the initial pretrained weights (i.e., line
13 in algorithm 1). If the fine-tuning learning rate is satisfied:

η <

∥∥∥∥∂2L(w, x)
∂w2

∣∣∣
θ0

∥∥∥∥−1

2

,

algorithm 1 will converge.

IV. EXPERIMENTS

A. Experimental Setups

As argued above, a robust backdoor purification method
should have the ability to effectively mitigate the impact of
multiple backdoor attacks, maintain stability across varying
attacker power and fine-tuning conditions, and perform effi-
ciently in multiple settings and architectures. Therefore, we
study four research questions to evaluate the efficiency of PBP
in purifying backdoor attacks targeting malware classifiers as
follows.

1) RQ1: How well does PBP purify backdoor attacks
compared to related fine-tuning methods?

2) RQ2: Is PBP effective against backdoor attacks car-
ried out by attackers with varying levels of strength?

3) RQ3: Can PBP purify backdoor attacks stably under
different fine-tuning assumptions?

4) RQ4: How is PBP’s efficiency and sensitivity to its
hyperparameters and model architectures?

We first discuss our experimental settings, baselines, and
metrics below. Then, we answer each research question in turn.

Backdoor attacks and settings. In this work, we focus on
two state-of-the-art backdoor attack strategies designed for
malware classifiers, which are Explanation-guided [14] and
Jigsaw Puzzle [16]. Regarding the former attack, experiments
are conducted mainly on the EMBER-v1 [23] dataset. To study
the latter attack, we conduct experiments on the Android mal-
ware dataset sampled from AndroZoo [24]. The EMBER-v1
dataset consists of 2,351-dimensional feature vectors extracted
from 1.1 million Portable Executable (PE) files for Microsoft
Windows [14]. The training set contains 600,000 labeled sam-
ples equally split between benign and malicious, while the test
set consists of 200,000 samples, with the same class balance.
All the binaries categorized as malicious were reported as such
by at least 40 antivirus engines on VirusTotal [14]. For the
Jigsaw Puzzle attack, we reuse a sampled dataset from the
AndroZoo collection of Android applications, following the
setting of the original paper [16]. The feature vectors for the
Android apps were extracted using Drebin [68]. Each feature
in the Drebin feature vector has a binary value, where “1”
indicates that the app contains the specific feature (e.g., an
API, a permission), and “0” indicates that it does not. The final
dataset consists of 149,534 samples, including 134,759 benign
samples and 14,775 malware samples. The dataset covers 400
malware families, with the number of samples per family
ranging from 1 to 2,897, with an average size of 36.94 and
a standard deviation of 223.38. Both datasets are used for the
binary classification task, and the backdoor task is classifying
the malware samples given the presence of trigger as “benign”.

7

TABLE I: Performance of Fine-tuning Methods under Explain-Guided Backdoor Attacks on EMBER and JIGSAW Backdoor
Attacks on AndroZoo. The best numbers are highlighted in bold-underline, the second-best numbers are in underline.

Dataset Poisoning
Rate

Pre-trained FT FT-init FE-tuning LP FST Ours

C-Acc ASR C-Acc ASR C-Acc ASR C-Acc ASR C-Acc ASR C-Acc ASR C-Acc ASR

EMBER

0.005 99.01 99.23 99.10 99.50 99.07 99.27 99.11 99.50 99.11 99.52 99.07 99.61 96.57 17.83
0.01 98.94 98.79 99.06 99.54 99.04 99.41 99.03 99.16 99.08 99.39 99.04 99.59 96.52 15.44
0.02 98.98 99.43 99.08 99.69 99.01 99.52 99.06 99.63 99.10 99.61 99.04 99.66 96.57 17.83
0.05 98.99 99.43 99.08 99.87 99.06 99.91 99.07 99.82 99.03 99.83 99.90 99.76 96.41 17.58

AndroZoo

0.005 98.53 82.91 98.63 81.53 98.62 82.36 98.55 70.38 98.57 98.69 98.66 81.12 96.76 3.83
0.01 98.56 99.90 98.67 100.0 98.67 98.62 98.60 97.07 98.58 99.90 98.68 98.76 96.88 13.26
0.02 98.58 99.45 98.45 100 98.53 56.23 98.55 0.03 98.57 98.86 98.55 0.01 96.64 4.73
0.05 98.59 99.72 98.58 100.0 98.62 99.90 98.57 56.09 98.53 100.0 98.63 1.90 96.86 0.89

Training configurations. We consider several training con-
figurations to ensure our approach will generalize across
multiple indicative scenarios. For EMBER, we use the default
training and testing sets of this dataset and reproduce the
watermark for Explanation-guided attacks of the original paper
using the Combined strategy, which is a greedy algorithm to
conditionally select new feature dimensions and their values
such that those values are consistent with existing goodware-
oriented points in the attacker’s dataset to generate a backdoor
watermark. For AndroZoo, we follow the original work by
Yang et al. [16] and split the dataset for training (67%) and
testing (33%). We reproduce the backdoor attack on feature
space with the “Kuguo” family as the targeted set, which is
the largest family in this dataset (2,845 samples). Without
further mentioning, for both datasets, we reserve 10% from
the training data for fine-tuning. We leave the detailed settings
for training and fine-tuning parameters, and the evaluation of
backdoored models before fine-tuning in the Appendix A.

Baselines. We compare our method with five fine-tuning de-
fenses used in backdoor purification tasks: Vanilla FT, Vanilla
LP, FE-tuning, FT-init, and Feature-shift Fine-tuning. Since we
use an MLP model architecture in all experiments, we consider
the final layer as the classifier θw and all the previous layers
as the feature extractor component θΦ. Specifically,

— Vanilla Fine-Tuning (vanilla FT): In this approach, we fine-
tune the entire model, updating all parameters including both
the feature extractor (θΦ) and the linear classifier (θw). This
means that the entire model architecture undergoes learning
and adaptation to new data.
— Linear Probe (LP): Here, only the parameters of the linear
classifier θw are fine-tuned while keeping the feature extrac-
tor’s parameters (θΦ) unchanged and frozen. This method
assesses how well the pre-trained features can linearly separate
the data without altering the learned feature representations.
— Feature Extractor Tuning (FE-tuning) [69]: For FE-tuning,
the parameters in the model’s “head” (θw) are re-initialized and
then frozen. The rest of the model, i.e., the feature extractor
θΦ, is then fine-tuned. This approach is designed to update the
core representation abilities of the model while keeping the
decision layer fixed.
— Fine-Tuning with Initialization (FT-init) [59]: In FT-init,
the linear head is randomly re-initialized, and the entire model
architecture, including both the feature extractor and the linear
head, is fine-tuned. This combines a fresh start for the linear
classifier with an opportunity to further adapt the feature
extractor to new tasks.

(a) Clean and Backdoored
Models

(b) Clean and PBP’s Fine-
tuned Models

Fig. 4: Final layer’s activation of non-family-targeted back-
door attacks on triggered samples.

(a) Backdoored Model (b) PBP’s Fine-tuned Model

Fig. 5: Final layer’s activation of family-targeted backdoor
attacks on triggered samples.

— Feature Shift Tuning (FST) [59]: In this fine-tuning method,
the authors uses feature shifts by actively deviating the classi-
fier weights θΦ from the originally compromised weights.

Evaluation metrics. We use C-Acc, ASR, and DER to
evaluate the purification efficacy. The objective of a defender
is to maximize C-Acc and DER while minimizing ASR at the
same time. These three metrics are defined in Sec. II.

B. Experimental Results

1) RQ1: Can PBP purify the backdoor effectively on differ-
ent backdoor attack strategies, and to what extent, compared to
related fine-tuning methods?: We present the C-Acc and ASR
of compared methods in Table I with a fine-tuning size of 10%
for Explanation-guided and Jigsaw attacks, respectively. The
family-targeted backdoor attack (i.e., Jigsaw Puzzle) is more
fragile during the fine-tuning phases, compared to a non-family

8

backdoor attack. In Table I, FT-init, FE-tuning, and FST can
mitigate the backdoor effect on AndroZoo data up to 40% in
the best case. However, when addressing non-family targeted
backdoor attacks launched on EMBER, all of the baselines fail
to reduce the ASR. Our approach is the only one that almost
perfectly mitigates the backdoor effect — i.e., ASR decreases
to nearly zero for family-targeted and to 15.44% in the case
of non-family-targeted backdoor attacks.

Non-family-targeted backdoor attack. In this attack, the
adversary leverages SHAP values of a model trained on the
same dataset to identify the most influential features in the
feature space and then chooses values with the highest positive
SHAP values to maximize the backdoor impact. Therefore,
even a clean model not trained on poisoned data can still
exhibit a high ASR — up to 90%. We show the model behavior
of both the clean and backdoored models on the same set of
poisoned malware samples in Fig. 4. Even with a clean model,
almost 90% of the poisoned samples are activated below the
decision threshold, then will be misclassified into “benign.” If
the model is trained with poisoned samples combined with the
learned watermark, the activation of the final layer is shifted
drastically toward the “benign” decision. After fine-tuning,
our method PBP shifts the model decision on these poisoned
samples toward the “malware” decision, compared to the clean
model without any trigger.

Family-targeted backdoor attack. In this attack, the adver-
sary of the malware author only protects a specific target
family T rather than families as in the earlier attack. In our
experiment with this line of attacks, we consider “kuogu” as
the targeted family. In contrast to non-family-targeted attacks,
a clean model yields an ASR of zero, as the backdoor requires
a trigger mask combined with benign data—something absent
from the original training set. If the model is trained with
poisoned samples combined with the learned watermark, the
activation of the final layer is shifted drastically toward the
“benign” decision. After fine-tuning, our PBP shifts these
decisions toward the clean model.

To further demonstrate the performance of different fine-
tuning methods, we present the final layer activation of the
model after fine-tuning using each method compared to the
clean version on Fig. 6 and Fig. 7 . It is demonstrated that
the activations of poisoned samples remain shifted toward
“benign” even after fine-tuning, except for our method PBP.
The rationale for this phenomenon aligns with our observation
about activation distribution shift, i.e., other baselines based on
reinitialization and shifting model parameters fail in deviating
the activation distribution of backdoor neurons on triggered
malware samples toward that of non-triggered malware sam-
ples (cf. in Fig. 7). This is explained by the fact that these
two attack strategies include knowledge of the adversary via
a portion of the training data they control, and the trigger
is optimized by observing the model learning process on
these samples. Therefore, during the fine-tuning process, if the
distribution of the data exhibits properties previously known
by the adversary, the trigger can still cause the victim model
to malfunction. Empirically, even if only the final layer of
the victim model is initialized, the fine-tuning process cannot
make it forget the backdoor properties. This is presented via
the activation of the backdoor neurons if the targeted sample
combined with the trigger deviates significantly compared to

the original malware samples. Our method, PBP, is the only
fine-tuning method that can help fix the activation distribution
of the model and help it activate indiscriminately given the
malware and a corresponding triggered malware sample. In
conclusion, PBP demonstrates superior performance in purify-
ing backdoor attacks for both family-targeted and non-family-
targeted backdoor attacks.

2) RQ2: Is PBP effective against backdoor attacks car-
ried out by attackers with varying levels of strength?: To
answer this question, we evaluate the performance of PBP
and selected baselines across varying poisoning data rates
(PDR) — the proportion of training data manipulated by the
adversary. PDR reflects both the strength of backdoor attacks
and the adversary’s power. In realistic scenarios, attackers
often have limited access to training data and aim to succeed
with low PDR (≤ 1%). To assess defense efficacy, we vary
the PDR across [0.5%, 1%, 2%, 5%] and perform multiple
runs to ensure the stability of each method. We plot ASRs
of the compared fine-tuning methods in Fig. 8. For better
visualization, we plot the performance of the top-4 methods.
All baselines fail to reduce the ASR of the backdoor with
the EMBER dataset or achieve unnoticeable reduction across
multiple runs. Meanwhile, PBP can achieve the lowest ASR
across all PDRs considered and low deviation. Concerning the
family-targeted attack on AndroZoo, FE-Tuning and FST can
purify the backdoor when the poisoning rate increases to 2%–
5%. However, these methods cannot purify the backdoor when
the poisoning rate is low, i.e., 0.5% on both attacks. To this
end, PBP is the only fine-tuning strategy that can mitigate the
backdoor effect across various attacker-power settings with the
lowest variation, where the PDR increases from 0.5% to 5%.

3) RQ3: Can PBP purify the backdoor stably under dif-
ferent fine-tuning assumptions?: We evaluate our approach
against state-of-the-art fine-tuning methods under different
ratios of fine-tuning data to training data, increasing from
1% to 10%, using the family-targeted attack.1. Fig. 9 shows
that PBP performs well even when given a small portion of
fine-tuning data, 1% – 983 samples. With the family-targeted
attack on AndroZoo, other baselines underperform when the
poisoning rate is small, and are thus not effective against
non-family-targeted backdoor attacks. . The FST method can
perform better when the fine-tuning data size is greater than
5%. Specifically, when the fine-tuning size is 10% (Fig. 9d),
FST can mitigate the ASR low to almost zero when the
poisoning rate is large, i.e., 2-5%. However, given a fine-tuning
size small around 1% (Fig. 9a), AST does not reduce ASR, i.e.,
the ASR still maintains almost 100% in the worst case. Other
baselines such as FE-Tuning and FT-Init, can mitigate the
attack success rates in the case the poisoning rate is small—i.e.,
in the best case, they achieve 0% ASR, but their performance
is unstable across different settings. The reason is that these
methods depend on the initialization procedure before fine-
tuning—i.e., some layers are initialized using Gaussian noise
and can be frozen during fine-tuning. PBP is the only one that
exhibits stability and outperformed effectiveness in mitigating
the ASR across these settings.

Based on the analysis from Yang et al. [16], the effective-
ness of the backdoor inserted can be affected by other families

1We elide discussion of the non-family-targeted attack since we previously
demonstrated existing approaches are not robust against these attacks

9

(a) FT (b) FT-Init (c) LP (d) Fe-Tuning (e) FST (f) Ours

Fig. 6: Comparison of model activation of different fine-tuning methods and a clean model on targeted malware samples on
EMBER dataset.

(a) FT (b) FT-Init (c) LP (d) Fe-Tuning (e) FST (f) Ours

Fig. 7: Model activation of different fine-tuning methods on targeted malware samples with and without the trigger on EMBER
dataset on the final layer.

25

50

75

100

0.005 0.01 0.02 0.05
PDR

A
S

R
 (

%
)

FE−Tuning FST FT−Init Ours Pretrained

(a) EMBER

0

25

50

75

100

0.005 0.01 0.02 0.05
PDR

A
S

R
 (

%
)

FE−Tuning FST FT−Init Ours Pretrained

(b) AndroZoo

Fig. 8: Attack Success Rates of Fine-tuning methods under
different poisoning rates with fine-tuning size of 10%.

presenting in the training set. After analyzing their feature
distributions, there exist common features across different mal-
ware families. Such similarity could be caused by many rea-
sons, e.g., code reuse among different malware authors, shared
libraries, or the reuse of specific attack techniques [70]. This
insight helps explain the variability in fine-tuning performance.
As the size and composition of the fine-tuning dataset change,
so does the distribution of malware families, introducing shifts
in the feature space. When the features in the fine-tuning set
resemble those of the original target families, the backdoor
model is more likely to generalize well, maintaining high
attack success rates. In such cases, benign samples containing
features that overlap with the adversary’s crafted triggers can
act as subtle reminders of the backdoor pattern, helping the
model retain the malicious behavior. We further rigorously
evaluate the performance under multiple runs corresponding
to each fine-tuning size to simulate different malware family
distributions in the fine-tuning set and present the results in
Fig. 10. For better visualization, we only plot the performance
of the top-4 methods. First, Fig. 10a confirms that the dynamic
of the families presenting in the fine-tuning dataset only holds
with the family-based attack, i.e., JIGSAW on AndroZoo.
Specifically, the variation on multiple runs with EMBER

(Fig. 10a) is much lower than the corresponding number of
AndroZoo (Fig. 10b). Our observations indicate that larger
fine-tuning datasets with more diverse malware families are
more effective in helping PBP dilute the impact of backdoors.
As shown in Fig. 10b, increasing the fine-tuning size reduces
the variation in PBP’s purification performance, leading to
more consistent results. However, with larger fine-tuning sizes,
baseline methods that rely on re-initialization such as FE-
Tuning struggle to prevent the model from converging back
to the original backdoored state, demonstrating their limited
efficacy in maintaining robustness. The results demonstrate that
PBP is the most effective and stable approach across different
fine-tuning sizes, with its overall performance improving as
the fine-tuning size increases.
Discussion on the construction of the fine-tuning dataset.
Since the fine-tuning dataset plays an important role in the
performance of the purification methods, we further analyze
different factors for constructing a fine-tuning dataset including
(i) overlapping fraction with training data, (ii) class ratio and
(iii) number of malware families in the fine-tuning dataset.
The summarized results are plotted in Fig. 11. We rigorously
vary these three factors from extreme to most favorable cases
to strengthen the practicability of the defender assumptions.
First, PBP can achieve robust purification efficacy even when
the fine-tuning dataset is constructed by reusing a portion
of available training data, showing that the fine-tuning data
is not necessarily non-overlapping with the training data.
Second, PBP does not require the exact original class ratio for
successful purification. Indeed, with AndroZoo, our method
can erase the backdoor under an extreme case where the
negative per positive class ratio is 0.04 : 1. Third, the fine-
tuning process does not require the presence of all malware
families, where PBP is effective from the family ratio of
0.1 : 1, compared to the original malware families in the
training set, i.e., approximately 30 families in our setting. More
detailed results and analysis are left in the Appendix.

4) RQ4: How is PBP’s efficiency and sensitivity to its
hyperparameters and model architectures?: To answer this

10

Pretrained FT FT−Init FE−Tuning LP FST Ours

0

25

50

75

100

0.005 0.01 0.02 0.05
Poisoning Rate

A
S

R
 (

%
)

(a) FT size = 1%

0

25

50

75

100

0.005 0.01 0.02 0.05
Poisoning Rate

A
S

R
 (

%
)

(b) FT size = 2%

0

25

50

75

100

0.005 0.01 0.02 0.05
Poisoning Rate

A
S

R
 (

%
)

(c) FT size = 5%

0

25

50

75

100

0.005 0.01 0.02 0.05
Poisoning Rate

A
S

R
 (

%
)

(d) FT size = 10%

Fig. 9: Comparison of different methods under small to large fine-tuning data size with different PDRs.

25

50

75

100

0.01 0.02 0.05 0.1
Fine−tune Size

A
S

R
 (

%
)

FE−Tuning FST FT−Init Ours Pretrained

(a) EMBER

0

30

60

90

0.01 0.02 0.05 0.1
Fine−tune Size

A
S

R
 (

%
)

FE−Tuning FST FT−Init Ours Pretrained

(b) AndroZoo

Fig. 10: Attack Success Rates of Fine-tuning methods under
different fine-tuning sizes with PDR of 0.5%.

0

25

50

75

100

0.01 0.04 0.08 0.1 0.12 0.15

V
a

lu
e

 (
%

)

ASR DER AndroZoo EMBER Training Ratio

0

25

50

75

100

0.01 0.04 0.08 0.1 0.12 0.15
Class Ratio (β:1)

V
a

lu
e

 (
%

)

ASR DER AndroZoo EMBER Training Ratio

0

25

50

75

100

0 0.2 0.4 0.6 0.8 1
Overlap Fraction

V
a

lu
e

 (
%

)

ASR DER AndroZoo EMBER 0

25

0.1 0.2 0.4 0.6 0.8 1
Class Ratio (β:1)

0

25

50

75

100

0.01 0.04 0.08 0.1 0.12 0.15
Class Ratio (β:1)

V
a

lu
e

(%
)

ASR DER AndroZoo EMBER Training Ratio

0

25

50

75

100

0.01 0.1 0.2 0.3 0.4 0.5
Family Ratio (:1)

A
S

R
 (

%
)

ASR DER

Fig. 11: PBP’s performance under different fine-tuning dataset
conditions.

question, we evaluate the performance of PBP under varied
settings for its hyperparameters, the depth of the model, and
network architecture. We first evaluate the performance of PBP
under different settings of two important hyperparameters: α
(Eqn. 4), which is the factor balancing activation alignment in
the first step, and σ (Eqn. 5), which controls the magnitude
of the isotropic Gaussian noise added to the original model
θ0 in the second phase. The results are shown in Fig. 12a
and Fig. 12b. All the experiments are conducted with the non-
family-targeted attack on EMBER with a fine-tuning size of
10%, and the most stealthy attack with 0.5% poisoning rate.

In the first experiment, we select the value for α from
[5e − 04, 0.001, 0.005, 0.01, 0.05, 0.1], and measure ASR and
DER to evaluate the effectiveness of each setting. From
Fig. 12a, the selection of α = 0.005 is the most effective
since it brings the lowest ASR and the highest DER. We
observe that higher α causes the model to align with the
activation distribution of the backdoored model faster, and
we suggest setting this value from the range of 0.001 to
0.01 so that the training accuracy increases during the first
phase of PBP. In the second experiment, we select the value

14

15

16

17

18

70

75

80

85

90

5e−04 0.001 0.005 0.01 0.05 0.1
α

A
S

R
 (

%
) D

E
R

 (%
)

ASR DER

(a) Loss alignment control pa-
rameter α

25

50

75

100

25

50

75

100

0.05 0.1 0.2 0.3 0.5 0.7 1 2
σ

A
S

R
 (

%
) D

E
R

 (%
)

ASR DER

(b) Parameter smoothing con-
trol parameter σ

Fig. 12: Performance of model with different settings for
hyperparameters.

TABLE II: Performance of PBP under different model settings.

Model Architecture #Params Clean Fine-tuned

C-Acc ASR C-Acc ASR

2000/1000/500 22M 98.63 98.72 95.91 14.64
4000/2000/1000 50M 98.53 82.91 96.76 3.83
4000/4000/2000 64M 98.57 96.10 97.71 8.87
8000/4000/2000 120M 98.60 95.34 97.50 5.70

for σ from small to large [0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2]. In
Fig. 12b, the higher the value of σ is, the lower the ASR a
fine-tuned model achieves. However, as σ increases, the clean
accuracy decreases, because the fine-tuned model deviates a
larger distance compared to the original model. To balance
this trade-off, we suggest that this value should be tuned in a
range of 0.5 to 1.0. Selecting too small a σ reduces backdoor
mitigation effectiveness, as the model remains too close to the
backdoored state, with minimal updates per round rendering
activation shifts ineffective.

In addition, we demonstrate the stability of PBP under
different model architectures, we vary the size of the MLP
models increasingly from 20M to 120M. The results in Table II
showcases that PBP performs effectively with different model
settings. Specifically, PBP can successfully reduce ASR by
a gap of 90% when the model is largest, i.e., 120M. In the
Appendix, we further investigate performance of PBP with
additional model architectures including CNN [71], ResNet-
18 [72] and VGG [73]. The rationale that PBP can work with
different network architectures is as follows. First, our method
finds the backdoor neuron mask Nm in a layer-wise manner
following Eqn. 4. Thus, a model with more layers would not

11

impact this approach to identifying. Second, our approach ad-
dresses not only the backdoored neurons but also the relation-
ships with benign neurons via alternative optimization, which
ensures the attack remains localized and does not disrupt the
entire network. Therefore, our approach can also handle neural
architectures where inter-layer relationships differ. Third, our
intuition is based on the sparsity of gradients of backdoor
neurons, which matches other Computer Vision architectures
like ResNet, LSTM, GPT-2, and Transformer [65, 58, 54].
Our conclusion is that PBP demonstrates stability across
different parameter settings and performs consistently across
both simple and complex model architectures.

C. Discussion and Limitations

Through extensive evaluation, we demonstrate the effec-
tiveness and stability of PBP across various poisoning rates,
surpassing existing state-of-the-art strategies. In this section,
we further discuss the practicability and impact of our ap-
proach, insights from different backdoor strategies, and the
clean accuracy trade-off.

Practicability of post-defense solution. We want to argue
that collecting such a fine-tuning dataset is feasible with
multiple solutions. First of all, our method can work with
a small dataset size, i.e., 923 samples, and it does not re-
quire the presence of all families during the training. To
collect those, the defender can rely on open-source reposi-
tories and public malware archives such as AndroZoo [24],
Malware Bazaar [74], VirusShare [75], and MalShare [76].
These repositories allow easy access to malware datasets
and eliminate the need to collect raw data independently. In
addition, the fine-tuning process only requires one sample for
the rare families, and the training data can be reused if it
is available. These factors make the collection of fine-tuning
datasets more feasible. Recent researches show that synthetic
data and augmented data can be generated by mutating ex-
isting samples (e.g., adding junk code, or altering headers)
to mimic how malware evolves [77, 78, 79], which can help
to seed the dataset. This feasibility enhances the impact of
post-defense backdoor purification across critical scenarios.
Organizations/defenders often acquire pre-trained or public
backbone models for malware detection through purchases
from third-party vendors or open-source repositories. However,
vendor-provided models can be compromised or backdoored,
potentially leading to catastrophic failures, such as banking
systems overlooking malware that siphons customer data and
healthcare institutions misclassifying ransomware, exposing
patient records to attackers. The purification is necessary
when an institution/defender uses the malware classifier model
and analysts notice that certain samples related to identified
malware variants are consistently being labeled as safe. Instead
of retraining, which is resource-intensive, defenders can fine-
tune these models using small, curated datasets. This approach
ensures reasonable deployment of a trustworthy, customized
detection system, neutralizing backdoors while adapting to
evolving threats with minimal cost and effort. Our method
currently assumes the defender can control the trustworthiness
of the fine-tuning data and conduct additional investigating
such as third-party labeling to ensure the fine-tuning data is
clean. The study of how poisoned data can affect backdoor
purification methods can be beneficial for the community and
should be addressed in future works.

TABLE III: Results of continuing training to improve C-Acc
on AndroZoo dataset with varied PDR.

Models 0.005 0.01 0.02 0.05

C-Acc ASR C-Acc ASR C-Acc ASR C-Acc ASR

Clean 98.52 0.01 98.52 0.01 98.52 0.01 98.52 0.01
Backdoored 98.53 82.91 98.48 99.90 98.58 99.45 98.59 99.72
Fine-tuned 96.76 3.83 96.88 13.26 96.64 4.73 96.86 0.89
Continued 98.18 5.73 97.65 8.25 97.47 0.17 97.55 0.03

Family-targeted backdoor attack is more fragile during
fine-tuning. In the original work of Yang et al. [16], the Jigsaw
Puzzle attack was stealthier than non-family-targeted backdoor
attack in bypassing mainstream defense such as MNTD [22].
Specifically, the detection AUCs2 are below 0.557 (slightly
better than random guessing) given Jigsaw Puzzle attacks,
while the corresponding number for the Explanation-guided
attack is up to 0.919. However, during the fine-tuning process,
the Jigsaw Puzzle is more fragile compared to the Explanation-
guided, as fine-tuning defenses such as FE-Tuning, FT-Init, and
FST can mitigate the ASR near zero in many scenarios. Our
PBP approach can erase the backdoor effect in all considered
scenarios with smaller compensation for clean accuracy. How-
ever, the lowest ASR that PBP can reach with the Explanation-
guided attack is around 15%, and all considered baselines fail
in mitigating this attack during the fine-tuning process even
when the fine-tuning size is large.

Addressing accuracy degradation during fine-tuning.
While our approach achieves state-of-the-art backdoor mit-
igation and remains stable across diverse settings, it may
slightly reduce clean accuracy—–a trade-off common in back-
door purification methods. The reduction in clean accuracy
results from the purified model misclassifying some benign
samples as malware, leading to a higher false positive rate.
As shown in Fig. 6f, the decision boundary of the fine-tuned
model expands beyond that of the clean model. This occurs
because PBP assigns smaller activation values to backdoored
malware samples, attempting to separate them more distinctly
from benign ones. This behavior contrasts with the backdoor
insertion process, which seeks to bring backdoored samples
closer to those of the targeted class, disguising the malware
effectively. In reversing this effect, PBP creates a more distinct
boundary between benign and malicious samples. However,
this expanded boundary can cause overfitting on the fine-
tuning dataset, introducing degradation in overall accuracy.
Despite the reduction in clean accuracy, the primary ob-
jective of backdoor mitigation is to ensure robust security.
This involves making a trade-off: sacrificing a degree of
performance to achieve higher security, which aligns with
common practices across general ML applications. As shown
by recent research [80, 59], this security-performance trade-off
remains a fundamental and active area of research. To better
address this issue, we conduct an additional experiment to
continue training the fine-tuned model θT produced by our
post-training backdoor purification in Algo. 1. Specifically,
we continue to train this model using only the cross entropy
loss LCE on the fine-tuning data Dft for 20 more epochs.
Table III demonstrates the C-Acc improvement was achieved
by continuing the training process. In the optimal scenario,
the continued training process can reduce the trade-off in

2AUC is a measure of the Area Under Curve, which captures how well a
classifier can distinguish classes. 0.5 implies the classifier is no better than
random guessing. Scores near 1.0 indicate more perfect discriminatory power.

12

clean accuracy by up to 1.42%, when the poisoning rate is
small (i.e., 0.5%). Empirically, the accuracy improvement does
not vary much beyond 20 epochs. Thus, the trade-off created
by our method can be addressed by continued training, but
cannot be completely addressed due to the stealthiness of the
inserted backdoor attacks, leaving an open research direction
for the future. Incorporating reverse engineering techniques
can be a potential solution to enhance purification efficiency
by accurately identifying backdoored neurons. This targeted
approach ensures the fidelity of pre-trained features during
fine-tuning, preserving essential representations while effec-
tively neutralizing potential threats. Overall, PBP is the first
post-training method that can mitigate both family-targeted and
non-family-targeted backdoor attacks in malware classifiers.

V. RELATED WORKS

In this section, we discuss the current body of work
on backdoor attacks and defenses for malware classification,
specifically backdoor purification during fine-tuning.

Backdoor attacks for malware classification. Even though
backdoor attacks have been extensively studied in the image
domain, most of them cannot be applied to malware classifiers
due to two main reasons: (1) incompatible domain (e.g., style
transfer does not apply even in the case where the binary
is represented as an image), and (2) realizing the trigger
embedding from the feature space to the problem space is
very difficult, as feature extraction is not bijective [81, 82].
Overcoming these concerns, Li et al. [83] devised a feasible
backdoor attack by appropriately using evolutionary algorithms
to generate realizable triggers. However, the full-access as-
sumption in their work is usually too strong for the case
of malware classification, as multiple trusted third-party AV
vendors usually perform labeling. Severi et al. [14] relaxed
this requirement by introducing a clean-label backdoor attack.
Similarly, Yang et al. [16] proposed a selective backdoor that
improves stealthiness and effectiveness, following the intuition
that a malware author would prioritize protecting their own
malware family instead of all malware in general.

Backdoor countermeasures for malware classifications.
Similar to the image space setting, the most popular defense
mechanism against backdoor attacks for malware classification
is adversarial training [48], in which the model is trained
and/or fine-tuned to correctly predict on adversarially crafted
samples. However, generating new adversarial examples for the
model at every epoch is very computationally intensive, and
can take much longer than traditional training [84]. Another
approach leverages various heuristics to remove adversarial
samples from the training dataset. This way, any manipulations
introduced by adversaries can be undone before the samples
are sent to the malware detector. However, these empirical
defenses usually only work for very few adversarial attack
methods, and are thus attack-specific [49]. For the situation
where the end user only has limited additional labeled clean
data and/or the required resources for retraining becomes
infeasible, previous works have adapted image-space backdoor
detection mechanisms [36, 22] to malware [85]. However, the
ultimate results were not compelling, sometimes performing
only as well as random guessing.

Backdoor purification during fine-tuning. Fine-tuning has
been proven to work well as a post-training defense mechanism

against backdoor attacks [40, 12], are model-agnostic, and can
be combined with existing training methods and/or orthogonal
approaches to robustness [35]. While fine-tuning-based meth-
ods are most popular with large pre-trained models [50, 51, 52]
and will perform better than test-time defenses [86], they still
require a considerable amount of finetuning data to effectively
remove the embedded backdoor. Recent methods, such as
Teacher-Student (T-S) purification, have shown promise by
leveraging neuron pruning or similar techniques to mitigate
backdoors during model refinement[58]. However, these meth-
ods face limitations in models without residual-block compo-
nents or in non-image tasks[44]. To the best of our knowledge,
no prior work has addressed the purification of backdoors
through fine-tuning in the context of malware classification.
This gap highlights the potential of using fine-tuning and
purification techniques—such as PBP (Post-Backdoor Purifi-
cation)—in malware models, which operate under constraints
different from traditional image-based tasks.

VI. CONCLUSION

In this paper, we present PBP, a post-training backdoor
purification approach based on our empirical investigation of
distributions of neuron activations in poisoned malware clas-
sifiers. PBP makes no assumptions about the backdoor pattern
type or method of incorporation using a small amount of clean
data during the fine-tuning process. By leveraging the distinct
activation patterns of backdoor neurons, PBP employs a two-
phase strategy: generating a neuron mask from clean data
and applying masked gradient optimization to neutralize back-
door effects. Our extensive experiments demonstrate PBP’s
effectiveness and adaptability, outperforming existing defenses
without requiring prior knowledge of attack strategies. This
approach substantially enhances the security and reliability of
malware classification models in real-world applications.

ACKNOWLEDGMENT

We acknowledge partial support from the NSA Science of
Security program, the DARPA agreement HR001124C0425,
and the ARPA-H DIGIHEALS program. The views and con-
clusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of the NSA,
DARPA, ARPA-H, or the US Government.

REFERENCES

[1] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A
review of android malware detection approaches based
on machine learning,” IEEE access, vol. 8, pp. 124 579–
124 607, 2020.

[2] M. Gopinath and S. C. Sethuraman, “A comprehensive
survey on deep learning based malware detection tech-
niques,” Computer Science Review, vol. 47, p. 100529,
2023.

[3] A. Bensaoud, J. Kalita, and M. Bensaoud, “A survey
of malware detection using deep learning,” Machine
Learning With Applications, vol. 16, p. 100546, 2024.

[4] D. Farhat and M. S. Awan, “A brief survey on ran-
somware with the perspective of internet security threat
reports,” in 2021 9th International Symposium on Digital
Forensics and Security (ISDFS). IEEE, 2021, pp. 1–6.

13

[5] K. Satvat, R. Gjomemo, and V. Venkatakrishnan, “Ex-
tractor: Extracting attack behavior from threat reports,” in
2021 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2021, pp. 598–615.

[6] R. Chaganti, V. Ravi, and T. D. Pham, “A multi-view fea-
ture fusion approach for effective malware classification
using deep learning,” Journal of Information Security and
Applications, vol. 72, p. 103402, 2023.

[7] V. Ravi and M. Alazab, “Attention-based convolutional
neural network deep learning approach for robust mal-
ware classification,” Computational Intelligence, vol. 39,
no. 1, pp. 145–168, 2023.

[8] M. Ahmed, N. Afreen, M. Ahmed, M. Sameer, and
J. Ahamed, “An inception v3 approach for malware clas-
sification using machine learning and transfer learning,”
International Journal of Intelligent Networks, vol. 4, pp.
11–18, 2023.

[9] F. Deldar and M. Abadi, “Deep learning for zero-day
malware detection and classification: a survey,” ACM
Computing Surveys, vol. 56, no. 2, pp. 1–37, 2023.

[10] C. Li, X. Chen, D. Wang, S. Wen, M. E. Ahmed,
S. Camtepe, and Y. Xiang, “Backdoor attack on machine
learning based android malware detectors,” IEEE Trans-
actions on dependable and secure computing, vol. 19,
no. 5, pp. 3357–3370, 2021.

[11] Y. Yu, Y. Wang, W. Yang, S. Lu, Y.-P. Tan, and A. C.
Kot, “Backdoor attacks against deep image compression
via adaptive frequency trigger,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 12 250–12 259.

[12] B. Wu, H. Chen, M. Zhang, Z. Zhu, S. Wei, D. Yuan, and
C. Shen, “Backdoorbench: A comprehensive benchmark
of backdoor learning,” Advances in Neural Information
Processing Systems, vol. 35, pp. 10 546–10 559, 2022.

[13] E. Wenger, J. Passananti, A. N. Bhagoji, Y. Yao,
H. Zheng, and B. Y. Zhao, “Backdoor attacks against
deep learning systems in the physical world,” in Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 6206–6215.

[14] G. Severi, J. Meyer, S. Coull, and A. Oprea,
“{Explanation-Guided} backdoor poisoning attacks
against malware classifiers,” in 30th USENIX security
symposium (USENIX security 21), 2021, pp. 1487–1504.

[15] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay,
and D. Mukhopadhyay, “A survey on adversarial attacks
and defences,” CAAI Transactions on Intelligence Tech-
nology, vol. 6, no. 1, pp. 25–45, 2021.

[16] L. Yang, Z. Chen, J. Cortellazzi, F. Pendlebury, K. Tu,
F. Pierazzi, L. Cavallaro, and G. Wang, “Jigsaw puzzle:
Selective backdoor attack to subvert malware classifiers,”
in 2023 IEEE Symposium on Security and Privacy (SP).
IEEE, 2023, pp. 719–736.

[17] Y. Zhang, F. Feng, Z. Liao, Z. Li, and S. Yao, “Universal
backdoor attack on deep neural networks for malware
detection,” Applied Soft Computing, vol. 143, p. 110389,
2023.

[18] I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach,
“Query-efficient black-box attack against sequence-based
malware classifiers,” in Proceedings of the 36th Annual
Computer Security Applications Conference, 2020, pp.
611–626.

[19] B. Tran, J. Li, and A. Madry, “Spectral signatures in

backdoor attacks,” Advances in neural information pro-
cessing systems, vol. 31, 2018.

[20] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Ed-
wards, T. Lee, I. Molloy, and B. Srivastava, “Detecting
backdoor attacks on deep neural networks by activation
clustering,” arXiv preprint arXiv:1811.03728, 2018.

[21] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng,
and B. Y. Zhao, “Neural cleanse: Identifying and mitigat-
ing backdoor attacks in neural networks,” in 2019 IEEE
symposium on security and privacy (SP). IEEE, 2019,
pp. 707–723.

[22] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and
B. Li, “Detecting ai trojans using meta neural analysis,”
in 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 2021, pp. 103–120.

[23] H. S. Anderson and P. Roth, “Ember: an open dataset
for training static pe malware machine learning models,”
arXiv preprint arXiv:1804.04637, 2018.

[24] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon,
“Androzoo: Collecting millions of android apps for the
research community,” in Proceedings of the 13th interna-
tional conference on mining software repositories, 2016,
pp. 468–471.

[25] D. Hitaj, B. Hitaj, and L. V. Mancini, “Evasion at-
tacks against watermarking techniques found in mlaas
systems,” in 2019 Sixth International Conference on
Software Defined Systems (SDS). IEEE, 2019, pp. 55–
63.

[26] R. Ning, J. Li, C. Xin, and H. Wu, “Invisible poison:
A blackbox clean label backdoor attack to deep neural
networks,” in IEEE INFOCOM 2021-IEEE Conference
on Computer Communications. IEEE, 2021, pp. 1–10.

[27] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor:
A natural backdoor attack on deep neural networks,” in
Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings,
Part X 16. Springer, 2020, pp. 182–199.

[28] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets:
Evaluating backdooring attacks on deep neural networks,”
IEEE Access, vol. 7, pp. 47 230–47 244, 2019.

[29] S. Hu, Z. Zhou, Y. Zhang, L. Y. Zhang, Y. Zheng, Y. He,
and H. Jin, “Badhash: Invisible backdoor attacks against
deep hashing with clean label,” in Proceedings of the 30th
ACM international conference on Multimedia, 2022, pp.
678–686.

[30] D. Gibert, G. Zizzo, and Q. Le, “Towards a practical
defense against adversarial attacks on deep learning-
based malware detectors via randomized smoothing,” in
European Symposium on Research in Computer Security.
Springer, 2023, pp. 683–699.

[31] Y. Gao, Y. Li, L. Zhu, D. Wu, Y. Jiang, and S.-T. Xia,
“Not all samples are born equal: Towards effective clean-
label backdoor attacks,” Pattern Recognition, vol. 139, p.
109512, 2023.

[32] T. D. Nguyen, T. Nguyen, P. Le Nguyen, H. H. Pham,
K. D. Doan, and K.-S. Wong, “Backdoor attacks and
defenses in federated learning: Survey, challenges and
future research directions,” Engineering Applications of
Artificial Intelligence, vol. 127, p. 107166, 2024.

[33] K. Doan, Y. Lao, W. Zhao, and P. Li, “Lira: Learnable,
imperceptible and robust backdoor attacks,” in Proceed-
ings of the IEEE/CVF international conference on com-

14

puter vision, 2021, pp. 11 966–11 976.
[34] T. D. Nguyen, T. A. Nguyen, A. Tran, K. D. Doan, and

K.-S. Wong, “Iba: Towards irreversible backdoor attacks
in federated learning,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[35] M. Zhu, S. Wei, L. Shen, Y. Fan, and B. Wu, “Enhanc-
ing fine-tuning based backdoor defense with sharpness-
aware minimization,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp.
4466–4477.

[36] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe,
and S. Nepal, “Strip: A defence against trojan attacks
on deep neural networks,” in Proceedings of the 35th
annual computer security applications conference, 2019,
pp. 113–125.

[37] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang,
“Abs: Scanning neural networks for back-doors by artifi-
cial brain stimulation,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security, 2019, pp. 1265–1282.

[38] K. Jin, T. Zhang, C. Shen, Y. Chen, M. Fan, C. Lin,
and T. Liu, “Can we mitigate backdoor attack using
adversarial detection methods?” IEEE Transactions on
Dependable and Secure Computing, vol. 20, no. 4, pp.
2867–2881, 2022.

[39] S. Hong, V. Chandrasekaran, Y. Kaya, T. Dumitraş, and
N. Papernot, “On the effectiveness of mitigating data
poisoning attacks with gradient shaping,” arXiv preprint
arXiv:2002.11497, 2020.

[40] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning:
Defending against backdooring attacks on deep neural
networks,” in International symposium on research in
attacks, intrusions, and defenses. Springer, 2018, pp.
273–294.

[41] D. Wu and Y. Wang, “Adversarial neuron pruning purifies
backdoored deep models,” Advances in Neural Infor-
mation Processing Systems, vol. 34, pp. 16 913–16 925,
2021.

[42] R. Zheng, R. Tang, J. Li, and L. Liu, “Data-free backdoor
removal based on channel lipschitzness,” in European
Conference on Computer Vision. Springer, 2022, pp.
175–191.

[43] Y. Zeng, S. Chen, W. Park, Z. M. Mao, M. Jin, and
R. Jia, “Adversarial unlearning of backdoors via implicit
hypergradient,” arXiv preprint arXiv:2110.03735, 2021.

[44] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma,
“Neural attention distillation: Erasing backdoor triggers
from deep neural networks,” in International Conference
on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=9l0K4OM-oXE

[45] B. G. Doan, E. Abbasnejad, and D. C. Ranasinghe,
“Februus: Input purification defense against trojan attacks
on deep neural network systems,” in Proceedings of the
36th Annual Computer Security Applications Conference,
2020, pp. 897–912.

[46] Y. Feng, B. Ma, J. Zhang, S. Zhao, Y. Xia, and D. Tao,
“Fiba: Frequency-injection based backdoor attack in med-
ical image analysis,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2022, pp. 20 876–20 885.

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[48] X. Wang and R. Miikkulainen, “Mdea: Malware detection
with evolutionary adversarial learning,” in 2020 IEEE
Congress on Evolutionary Computation (CEC). IEEE,
2020, pp. 1–8.

[49] X. Ling, L. Wu, J. Zhang, Z. Qu, W. Deng, X. Chen,
Y. Qian, C. Wu, S. Ji, T. Luo et al., “Adversarial attacks
against windows pe malware detection: A survey of the
state-of-the-art,” Computers & Security, p. 103134, 2023.

[50] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu,
B. Lester, N. Du, A. M. Dai, and Q. V. Le, “Finetuned
language models are zero-shot learners,” arXiv preprint
arXiv:2109.01652, 2021.

[51] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark
et al., “Learning transferable visual models from natural
language supervision,” in International conference on
machine learning. PMLR, 2021, pp. 8748–8763.

[52] L. Zhang, L. Shen, L. Ding, D. Tao, and L.-Y. Duan,
“Fine-tuning global model via data-free knowledge dis-
tillation for non-iid federated learning,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, 2022, pp. 10 174–10 183.

[53] R. Zheng, R. Tang, J. Li, and L. Liu, “Pre-activation dis-
tributions expose backdoor neurons,” Advances in Neural
Information Processing Systems, vol. 35, pp. 18 667–
18 680, 2022.

[54] B. Li, Y. Cai, J. Cai, Y. Li, H. Qiu, R. Wang, and
T. Zhang, “Purifying quantization-conditioned backdoors
via layer-wise activation correction with distribution ap-
proximation,” in Forty-first International Conference on
Machine Learning, 2024.

[55] M. Fan, Y. Liu, C. Chen, X. Liu, and W. Guo, “Defense
against backdoor attacks via identifying and purifying
bad neurons,” arXiv preprint arXiv:2208.06537, 2022.

[56] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets:
Identifying vulnerabilities in the machine learning
model supply chain,” ArXiv, vol. abs/1708.06733,
2017. [Online]. Available: https://api.semanticscholar.
org/CorpusID:26783139

[57] H. Wang, Z. Xiang, D. J. Miller, and G. Kesidis,
“Mm-bd: Post-training detection of backdoor attacks
with arbitrary backdoor pattern types using a maximum
margin statistic,” 2023. [Online]. Available: https:
//arxiv.org/abs/2205.06900

[58] Y. Li, X. Lyu, X. Ma, N. Koren, L. Lyu, B. Li, and Y.-
G. Jiang, “Reconstructive neuron pruning for backdoor
defense,” in International Conference on Machine Learn-
ing. PMLR, 2023, pp. 19 837–19 854.

[59] R. Min, Z. Qin, L. Shen, and M. Cheng, “Towards
stable backdoor purification through feature shift tuning,”
Advances in Neural Information Processing Systems,
vol. 36, 2024.

[60] E. Frantar and D. Alistarh, “Spdy: Accurate pruning
with speedup guarantees,” in International Conference on
Machine Learning. PMLR, 2022, pp. 6726–6743.

[61] W. Lu, J. Wang, H. Li, Y. Chen, and X. Xie, “Domain-
invariant feature exploration for domain generalization,”

15

https://openreview.net/forum?id=9l0K4OM-oXE
https://api.semanticscholar.org/CorpusID:26783139
https://api.semanticscholar.org/CorpusID:26783139
https://arxiv.org/abs/2205.06900
https://arxiv.org/abs/2205.06900

arXiv preprint arXiv:2207.12020, 2022.
[62] B. Li, Y. Cai, H. Li, F. Xue, Z. Li, and Y. Li, “Near-

est is not dearest: Towards practical defense against
quantization-conditioned backdoor attacks,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024, pp. 24 523–24 533.

[63] N. Ivkin, D. Rothchild, E. Ullah, I. Stoica, R. Arora
et al., “Communication-efficient distributed sgd with
sketching,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[64] S. U. Stich, “Local sgd converges fast and communicates
little,” arXiv preprint arXiv:1805.09767, 2018.

[65] Z. Zhang, A. Panda, L. Song, Y. Yang, M. Mahoney,
P. Mittal, R. Kannan, and J. Gonzalez, “Neurotoxin:
Durable backdoors in federated learning,” in Interna-
tional Conference on Machine Learning. PMLR, 2022,
pp. 26 429–26 446.

[66] C. Xie, M. Chen, P.-Y. Chen, and B. Li, “Crfl: Certifiably
robust federated learning against backdoor attacks,” in
International Conference on Machine Learning. PMLR,
2021, pp. 11 372–11 382.

[67] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust
aggregation for federated learning,” IEEE Transactions
on Signal Processing, vol. 70, pp. 1142–1154, 2022.

[68] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon,
K. Rieck, and C. Siemens, “Drebin: Effective and ex-
plainable detection of android malware in your pocket.”
in Ndss, vol. 14, 2014, pp. 23–26.

[69] Z. Qin, L. Yao, D. Chen, Y. Li, B. Ding, and M. Cheng,
“Revisiting personalized federated learning: Robustness
against backdoor attacks,” in Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2023, pp. 4743–4755.

[70] A. Calleja, J. Tapiador, and J. Caballero, “The malsource
dataset: Quantifying complexity and code reuse in mal-
ware development,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 12, pp. 3175–3190,
2018.

[71] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[72] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770–778.

[73] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014.

[74] “Malwarebazaar,” 2024. [Online]. Available: https:
//bazaar.abuse.ch/

[75] R. Bruzzese, “Building visual malware dataset using
virusshare data and comparing machine learning baseline
model to coatnet for malware classification,” in Pro-
ceedings of the 2024 16th International Conference on
Machine Learning and Computing, 2024, pp. 185–193.

[76] “Malshare,” 2024. [Online]. Available: https://malshare.
com/

[77] M. R. Smtith, S. J. Verzi, N. T. Johnson, X. Zhou,
K. Khanna, S. Quynn, and R. Krishnakumar, “Malware
generation with specific behaviors to improve machine
learning-based detection,” in 2021 IEEE International

Conference on Big Data (Big Data). IEEE, 2021, pp.
2160–2169.

[78] O. Sharma, A. Sharma, and A. Kalia, “Migan: Gan
for facilitating malware image synthesis with improved
malware classification on novel dataset,” Expert Systems
with Applications, vol. 241, p. 122678, 2024.

[79] F. O. Catak, J. Ahmed, K. Sahinbas, and Z. H. Khand,
“Data augmentation based malware detection using con-
volutional neural networks,” Peerj computer science,
vol. 7, p. e346, 2021.

[80] B. Yi, S. Chen, Y. Li, T. Li, B. Zhang, and Z. Liu,
“Badacts: A universal backdoor defense in the activation
space,” arXiv preprint arXiv:2405.11227, 2024.

[81] K. Lucas, M. Sharif, L. Bauer, M. K. Reiter, and
S. Shintre, “Malware makeover: Breaking ml-based static
analysis by modifying executable bytes,” Proceedings
of the 2021 ACM Asia Conference on Computer and
Communications Security, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:234685221

[82] M. Ebrahimi, N. Zhang, J. L. Hu, M. T. Raza,
and H. Chen, “Binary black-box evasion attacks
against deep learning-based static malware detectors
with adversarial byte-level language model,” ArXiv,
vol. abs/2012.07994, 2020. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:229180865

[83] C. Li, X. Chen, D. Wang, S. Wen, M. E. Ahmed,
S. Camtepe, and Y. Xiang, “Backdoor attack on
machine learning based android malware detectors,”
IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 5, p. 3357 – 3370, 2022,
cited by: 15. [Online]. Available: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-85136940644&doi=
10.1109%2fTDSC.2021.3094824&partnerID=40&md5=
7233e9773ad7850e5822b9e3cd2cbcb6

[84] N. N. Tran, A. T. Bui, D. Phung, and T. Le, “Multiple
perturbation attack: Attack pixelwise under different
ℓp-norms for better adversarial performance,” 2022.
[Online]. Available: https://arxiv.org/abs/2212.03069

[85] M. D’Onghia, F. Di Cesare, L. Gallo, M. Carminati,
M. Polino, and S. Zanero, “Lookin’out my backdoor!
investigating backdooring attacks against dl-driven mal-
ware detectors,” in Proceedings of the 16th ACM Work-
shop on Artificial Intelligence and Security, 2023, pp.
209–220.

[86] Z. Sha, X. He, P. Berrang, M. Humbert, and
Y. Zhang, “Fine-tuning is all you need to mitigate
backdoor attacks,” 2022. [Online]. Available: https:
//arxiv.org/abs/2212.09067

[87] K. Xu, Y. Li, R. H. Deng, and K. Chen, “Deeprefiner:
Multi-layer android malware detection system applying
deep neural networks,” in 2018 IEEE European Sympo-
sium on Security and Privacy (EuroS&P). IEEE, 2018,
pp. 473–487.

[88] H. Li, S. Zhou, W. Yuan, X. Luo, C. Gao, and S. Chen,
“Robust android malware detection against adversarial
example attacks,” in Proceedings of the Web Conference
2021, 2021, pp. 3603–3612.

[89] S. Imambi, K. B. Prakash, and G. Kanagachidambaresan,
“Pytorch,” Programming with TensorFlow: Solution for
Edge Computing Applications, pp. 87–104, 2021.

[90] Y. Gao, B. G. Doan, Z. Zhang, S. Ma, J. Zhang, A. Fu,
S. Nepal, and H. Kim, “Backdoor attacks and counter-

16

https://bazaar.abuse.ch/
https://bazaar.abuse.ch/
https://malshare.com/
https://malshare.com/
https://api.semanticscholar.org/CorpusID:234685221
https://api.semanticscholar.org/CorpusID:229180865
https://api.semanticscholar.org/CorpusID:229180865
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136940644&doi=10.1109%2fTDSC.2021.3094824&partnerID=40&md5=7233e9773ad7850e5822b9e3cd2cbcb6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136940644&doi=10.1109%2fTDSC.2021.3094824&partnerID=40&md5=7233e9773ad7850e5822b9e3cd2cbcb6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136940644&doi=10.1109%2fTDSC.2021.3094824&partnerID=40&md5=7233e9773ad7850e5822b9e3cd2cbcb6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136940644&doi=10.1109%2fTDSC.2021.3094824&partnerID=40&md5=7233e9773ad7850e5822b9e3cd2cbcb6
https://arxiv.org/abs/2212.03069
https://arxiv.org/abs/2212.09067
https://arxiv.org/abs/2212.09067

measures on deep learning: A comprehensive review,”
arXiv preprint arXiv:2007.10760, 2020.

[91] M. Barni, K. Kallas, and B. Tondi, “A new backdoor
attack in cnns by training set corruption without label
poisoning,” in 2019 IEEE International Conference on
Image Processing (ICIP). IEEE, 2019, pp. 101–105.

[92] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted
backdoor attacks on deep learning systems using data
poisoning,” arXiv preprint arXiv:1712.05526, 2017.

APPENDIX
APPENDIX A

ARTIFACT APPENDIX

The artifact appendix is meant to be a self-contained
document presenting a roadmap for setting up and evaluating
your artifact 3. It should provide the following elements:

1) a list of the hardware, software, and configuration
requirements for running the artifact;

2) a clear description of how, and in what respects, the
artifact supports the research presented in the paper;

3) a guide for how others can execute and validate the
artifact for its functional and usability aspects;

4) the major claims made by your paper and a clear
description of how to obtain data for each claim
through your supplied artifact.

A. Description & Requirements

This section lists all the information necessary to recreate
the experimental setup we used to run our artifact.

1) How to access: We make our code and dataset
publicly available at https://github.com/judydnguyen/
pbp-backdoor-purification-official. The artifact materials
for this paper are permanently available at DOI:
https://doi.org/10.5281/zenodo.14253945.

2) Hardware dependencies: an NVIDIA A6000 GPU is
encouraged but not required. Our artifacts can be run on a
commodity desktop machine with an x86-64 CPU with storage
of at least 22GB for data only. To ensure that all artifacts run
correctly, it is recommended to use a machine with at least 16
cores and 48 GB of RAM. In the original experiments, we set
the number of workers to 54, but for a computer with a smaller
number of cores, the number of workers could be reduced, so
we set the default as 16. Our code can be run using a CPU if
a GPU is not available. However, the using of CPU may not
completely ensure to achieve numbers we reported.

3) Software dependencies: the required packages are listed
on environment.yml. We encourage installing and man-
aging these packages using conda. Our artifacts have been
tested on Ubuntu 22.04.

4) Benchmarks: In our experiments, we used two datasets.
1. Ember-v1 dataset, accessed at https://github.com/elastic/
ember. 2. AndroZoo dataset, accessed at https://androzoo.uni.
lu/. We included the implementation for all the baselines used
in our works in our code repository. We provide a cloud
link to share both processed datasets here. After downloading

3AEC evaluated a prior version of the artifact and the modifications do not
affect the claims and experiments in our submitted artifacts.

and decompressing file NDSS603-data-ckpt.zip, the
structure of this folder is as follows:

NDSS603-data-ckpt/
apg/
ember/

ckpts/

Here, dataset folders apg and ember are ready to use and
need to be moved to datasets/ folder. The clean checkpoint
version of the EMBER dataset is saved at ckpts and needs
to be moved to models/ember/torch/embernn.

B. Artifact Installation & Configuration

We first require that our repository at https://github.com/
judydnguyen/pbp-backdoor-purification-official is downloaded
local folder, e.g., via git clone or .zip download. Then,
we require downloading datasets and a checkpoint mentioned
in Section A4.

We conduct all the experiments using PyTorch version
2.1.0 and run experiments on a computer with an Intel Xeon
Gold 6330N CPU and an NVIDIA A6000 GPU. In our original
environment, we use Anaconda at https://anaconda.org/ to
manage the environment dependencies efficiently, ensuring the
reproducibility of our experiments. Specifically, we create a
virtual environment with conda version 23.7.3 and install
all necessary packages, including PyTorch, NumPy, and Scikit-
learn, as detailed in the provided environment.yml file.
The new environment can be created using:

conda config --set channel_priority flexible &&
conda env create --file=environment.yml &&
conda activate pbp-code

C. Experiment Workflow

We already set up the environments and data required
for our experiments in the Amazon Cloud instance. There-
fore, the previous steps can be skipped. Our artifacts contain
two independent experiments. The first experiment consists
of (i) training and (ii) purifying a backdoor model with the
EMBER dataset. The second experiment consists of (i) training
and (ii) purifying a backdoor model with the AndroZoo
dataset. The proposed workflow runs the two experiments
sequentially. Our repository contains scripts and a bash file
that can be used to automate all experiments.

D. Major Claims

• (C1): PBP achieves better backdoor purification per-
formance compared to baselines in terms of the lowest
Backdoor Accuracy (BA) it can produce on the EM-
BER dataset. This is proven by the experiment (E1)
whose results are illustrated/reported in [TABLE II:
Performance of Fine-tuning Methods under Explain-
Guided Backdoor Attacks on EMBER].

• (C2): PBP achieves better backdoor purification per-
formance compared to baselines in terms of the low-
est Backdoor Accuracy (BA) it can produce on the
AndroZoo dataset. This is proven by the experiment

17

https://github.com/judydnguyen/pbp-backdoor-purification-official
https://github.com/judydnguyen/pbp-backdoor-purification-official
https://doi.org/10.5281/zenodo.14253945
https://github.com/elastic/ember
https://github.com/elastic/ember
https://androzoo.uni.lu/
https://androzoo.uni.lu/
https://doi.org/10.5281/zenodo.14253945
https://github.com/judydnguyen/pbp-backdoor-purification-official
https://github.com/judydnguyen/pbp-backdoor-purification-official
https://anaconda.org/

(E2) whose results are illustrated/reported in [TABLE
II: Performance of Fine-tuning Methods under Jigsaw
Puzzle Backdoor Attacks on AndroZoo].

E. Evaluation

This section includes all the operational steps and exper-
iments that must be performed to evaluate our artifacts and
validate our results. In total, all experiments require between
1 and 5 human minutes and around 1 compute hour. We
assume that the machine is configured correctly with the
required dependencies, as described in Section A. The same
instructions, along with additional details, are provided in the
top-level README.md file of our repository.

1) Experiment (E1) - Claim (C1): [Backdoor Purification
With EMBER-v1] [5 human-minutes + 20 compute-minutes]:
evaluating the efficacy of different purification methods. Noted
that without using of GPU, this experiment may take up to 1
hour for a CPU with 64 cores.

[Preparation] In this step, the Ember-v1 data should be
ensured to be downloaded and extracted correctly. The feature
extraction steps are detailed in the original publication, which
can be accessed via the following GitHub link. The data should
be structured as follows:

datasets/
ember/

np
watermarked_X_test_32_feats.npy

wm_config_32_feats.npy
y_train.dat

X_train.dat

y_train.dat

X_test.dat

y_test.dat

[Execution] First, we need to train the backdoored model
and then apply purification for this model. In the implemen-
tation of Explanation-guided backdoor attacks with EMBER
dataset, a clean model is required and can be downloaded at
this link. After downloading, put this model in the follow-
ing folder: models/ember/torch/embernn. To train a
backdoored model, we use the following command:

./train_backdoor_ember.sh

After successfully training a backdoor model, we evaluate
different fine-tuning methods by the following command:

./experiment1_finetune_backdoor_ember.sh

[Results] Upon completion, the results are printed to stan-
dard output a summary of the performance of PBP and other
baselines in terms of Backdoor Accuracy (BA) and Clean Ac-
curacy (C-Acc). In our case, the experiment can be considered
successful if the BA of our method outperforms considered
baselines across different scenarios, i.e., the following line
is output. Verified outperforms of PBP: [True,
True, True, True, True]

2) Experiment (E2) - Claim (C2): [Backdoor Purification
With AndroZoo] [5 human-minutes + 1 compute-hour]: pro-
vide a short explanation of the experiment and expected results.

[Preparation] In this step, the data should be ensured to
be downloaded and processed correctly. The data should be
structured as follows:

apg/
X_train_extracted.dat

X_test_extracted.dat

apg-X.dat

apg-y.dat

apg-meta.dat

apg_sha_family.csv

[Execution] First, we need to train the
backdoored model and then apply purification for
this model. The commands for these are listed in
experiment1_finetune_backdoor_jigsaw.sh.

[Results] Upon completion, the results are printed to
standard output a summary of the performance of PBP and
other baselines in terms of Backdoor Accuracy (BA) and
Clean Accuracy (C-Acc). In our case, the experiment can be
considered successful if the BA of our method outperforms
considered baselines across different scenarios, i.e., the follow-
ing line is output. The BA should fall in the range [0-10%]
for the AndroZoo dataset. Verified outperforms of
PBP: [True, True, True, True, True]

F. Notes

To facilitate the evaluation, we have set up the environment
and prepared data beforehand at our provided cloud server. By
using this setup, we can skip all the preparation steps and start
directly with the actual reproduction. For example,

ssh ubuntu@$IP
cd pbp-code/PBP-BackdoorPurification
conda activate pbp-code
./train_backdoor_ember.sh
./experiment1_finetune_backdoor_ember.sh

APPENDIX B
TECHNICAL APPENDIX

This document serves as an extended exploration of our
research, providing an overview of our methods and results.
Appendix A provides a comprehensive discussion of the train-
ing process, including datasets, model structures, and configu-
rations used to reproduce the reported results. Next, we provide
the proof for our theorems in Appendix B. Additionally, we
present supplementary results not included in the main paper
in Appendix C. Following that, we conduct an extensive
analysis of the effect of the fine-tuning dataset on the PBP’s
performance and the rationale of intuition from our method
in Appendix D. We demonstrate the potential efficacy of our
method in the Computer Vision (CV) domain with multiple
backdoor attacks and model architectures in Appendix E.

18

https://github.com/elastic/ember
https://cumberland.isis.vanderbilt.edu/NDSS-F24-603.zip

TABLE IV: Training and Fine-tuning Configurations.

Dataset Train
batch size

Test
batch size

Optimizer
Learning rate Epochs Model

architecture

EMBER Train 512 512 Adam
0.001

5 MLP
(4000/2000/1000)

Fine-tune 512 512 0.004 10 MLP
(4000/2000/1000)

AndroZoo Train 256 512 Adam
0.001

20 MLP
(4000/2000/1000)

Fine-tune 256 512 0.001 10 MLP
(4000/2000/1000)

A. Training configurations
Table IV presents the training and fine-tuning config-

urations. With both datasets, we use MLP binary classifier
models with three hidden layers as following previous works
on malware classifiers [87, 16, 88]. We conduct all the exper-
iments using PyTorch version 2.1.0 [89] and run experiments
on a computer with an Intel Xeon Gold 6330N CPU and an
NVIDIA A6000 GPU.

B. Proof of convergence

Theorem 1. Let w0 be the initial pretrained weights (i.e. line
13 in algorithm 1). If the fine-tuning learning rate satisfies:

η <

∥∥∥∥∂2L(w, x)
∂w2

∣∣∣
w0

∥∥∥∥−1

2

,

algorithm 1 will converge.

Proof: Starting with some weight set w0, we finetune our
backdoored model with learning rate η. Denoting x as our
finetuning dataset, our method can be formulated as follows:

wi+1 − wi = (−1)iη
∂L(w, x)

∂w

∣∣∣
wi

. (8)

We apply first-order Taylor approximation around w = w0

to get the following:

∂L(w, x)
∂w

∣∣∣
wi

=
∂L(w, x)

∂w

∣∣∣
w0+(wi−w0)

≈ ∂L(w, x)
∂w

∣∣∣
w0

+ (wi − w0)
∂2L(w, x)

∂w2

∣∣∣
w0

.

Replacing the derivative with its approximation in Eq. 8:

wi+1 − wi = (−1)iη
∂L(w, x)

∂w

∣∣∣
wi

= (−1)iη

[
∂L(w, x)

∂w

∣∣∣
w0

+ (wi − w0)
∂2L(w, x)

∂w2

∣∣∣
w0

]
= (−1)iη[w̄ + (wi − w0)W̄]

where w̄ = ∂L(w,x)
∂w

∣∣∣
w0

and W̄ = ∂2L(w,x)
∂w2

∣∣∣
w0

. Given our
alternating optimization scheme flip the gradient sign at every

iteration, we can expand the (−1)i coefficients so that constant
terms cancel themselves:

w2k+2 − w2k+1 + w2k+1 − w2k

=

2k+1∑
i=2k

(−1)iη[w̄ + (wi − w0)W̄]

= − η(w2k+1 − w2k)W̄

which gives

w2k+2 − w2k+1 = (w2k+1 − w2k)(−I − ηW̄). (9)

Similarly, the odd terms can be calculated:

w2k+3 − w2k+2 + w2k+2 − w2k+1

=

2k+2∑
i=2k+1

(−1)iη[w̄ + (wi − w0)W̄]

= η(w2k+2 − w2k+1)W̄ ,

which leads to

w2k+3 − w2k+2 = (w2k+2 − w2k+1)(−I + ηW̄). (10)

Substituting Equation 9 with Equation 10 repeatedly, we
have this recurrence relation:

w2k+3 − w2k+2 = (w2k+1 − w2k)(−I − ηW̄)(−I + ηW̄)

= (w2k+1 − w2k)(I − η2W̄ 2)

= (w1 − w0)(I − η2W̄ 2)k+1

= ηw̄(I − η2W̄ 2)k+1. (11)

The matrix power is legal because W̄ is a Hessian matrix,
which makes it symmetric, and as a result (I − η2W̄ 2) is also
symmetric. The even-odd index pair difference can also be
derived in the same vein:

w2k+2 − w2k+1 = (w2k+1 − w2k)(−I − ηW̄)

= (w1 − w0)(−I − ηW̄)(I − η2W̄ 2)k

= ηw̄(−I − ηW̄)(I − η2W̄ 2)k. (12)

It is straightforward to see that if a symmetric matrix’s
largest eigenvalue is smaller than 1, its exponential will
converge to the zero matrix. We also have the property of
a matrix’s 2-norm from its operator norm:

∥Ax∥2 ≤ ∥A∥2∥x∥2.

Therefore for Equation 11, if we set η < ∥W̄∥−1
2 , we will

get the limit:

lim
k→∞

∥w2k+3 − w2k+2∥2 = 0.

For Equation 12, it gets slightly more complicated with an
additional factor. However, when we realize that:

∥ − I − ηW̄∥2 = ∥I + ηW̄∥2 ≤ 2,

the exponential convergence proof then follows identically.
Combining these two limits, we can conclude that {wi+1−wi}
as a sequence will converge to 0.

19

TABLE V: Backdoored model evaluation before fine-tuning
on both datasets.

Model PDR Accuracy ASR F1-Score Precision Recall

EMBER

B
ac

kd
oo

r 0.005 98.94% 97.72% 98.94% 99.04% 98.85%
0.01 98.98% 98.93% 98.97% 99.05% 98.89%
0.02 99.07% 99.55% 99.07% 99.20% 98.93%
0.05 98.97% 99.67% 98.97% 99.12% 98.82%

Clean 98.99% 70.19% 98.98% 99.18% 98.79%

AndroZoo

B
ac

kd
oo

r 0.005 98.53% 82.91% 90.72% 92.20% 89.29%
0.01 98.48% 99.90% 90.14% 94.35% 86.28%
0.02 98.58% 99.45% 90.97% 92.86% 89.16%
0.05 98.59% 99.72% 90.90% 94.29% 87.74%

Clean 98.52% 0.01% 90.61% 92.78% 88.54%

C. Additional Results

We provide the detailed results for experimental results
in this section. Table I in the main manuscript presents
the result for the fine-tuning size of 0.1 for the AndroZoo
dataset. The performance of trained models for both tasks
is shown in Table V Regarding results with different fine-
tuning sizes results in Fig. 9. We give the detailed results
in Tables VI VII and VIII. The results demonstrate that
PBP outperforms selected baselines consistently on different
settings, i.e., achieving the lowest attack success rates and
balancing between main accuracy and attack success rate.
However, we can observe the trade-off between accuracy
degradation when the fine-tuning data is limited. Specifically, it
drops from 96% to 94% when the fine-tuning size shrinks. The
potential solution for addressing this trade-off is previously
discussed in Section IV-C.

TABLE VI: Comparison of different methods under fine-tuning
size = 0.01 for AndroZoo dataset.

PDR Metrics Pretrained FT FT-Init FE-Tuning LP FST Ours

0.005 C-Acc 98.53 98.59 97.73 84.14 84.14 98.55 91.29
ASR 82.91 79.88 69.52 29.96 29.96 51.98 2.90

0.01 C-Acc 98.61 98.65 97.81 72.14 98.61 98.66 92.85
ASR 86.57 83.81 72.14 81.88 85.85 88.37 0.73

0.02 C-Acc 98.59 98.65 98.22 83.12 98.59 98.58 94.03
ASR 99.00 99.41 47.22 1.84 99.38 69.45 4.00

0.05 C-Acc 98.69 98.65 97.82 77.66 98.63 98.62 95.74
ASR 99.00 100.0 99.83 97.62 100.0 100.0 0.79

TABLE VII: Comparison of different methods under fine-
tuning size = 0.02 for AndroZoo dataset.

PDR Metrics Pretrained FT FT-Init FE-Tuning LP FST Ours

0.005 C-Acc 98.67 98.65 98.67 97.83 98.69 98.68 94.57
ASR 96.34 98.65 98.67 97.83 98.69 98.68 18.40

0.01 C-Acc 98.56 98.62 98.62 98.07 98.59 98.70 93.55
ASR 99.90 99.93 99.90 19.43 99.93 99.93 7.21

0.02 C-Acc 98.67 98.61 98.58 97.84 98.67 98.65 94.45
ASR 97.62 98.14 35.28 0.82 98.86 71.83 0.21

0.05 C-Acc 98.68 98.60 98.49 97.87 98.60 98.67 96.51
ASR 99.97 100.0 0.00 0.00 100.0 100.0 0.73

TABLE VIII: Comparison of different methods under fine-
tuning size = 0.05 for AndroZoo dataset.

PDR Metrics Pretrained FT FT-Init FE-Tuning LP FST Ours

0.005 C-Acc 98.62 98.66 98.62 98.57 98.59 98.64 96.51
ASR 85.40 85.36 87.68 80.08 82.40 91.09 10.25

0.01 C-Acc 98.62 98.65 98.67 98.66 98.61 98.70 96.32
ASR 100.0 100.0 96.65 99.31 100.0 99.93 13.77

0.02 C-Acc 98.48 98.67 98.64 98.55 98.56 98.66 96.29
ASR 80.42 80.81 89.75 69.04 94.58 0.31 14.88

0.05 C-Acc 98.69 98.63 98.61 98.51 98.62 98.58 96.36
ASR 99.79 100.0 0.00 0.14 100.0 95.72 8.21

(a) FT (b) FT-Init (c) LP

(d) Fe-Tuning (e) FST (f) Ours

Fig. 13: Comparison of model activation of different fine-
tuning methods and a clean model on targeted malware sam-
ples on AndroZoo dataset.

D. Additional Analysis

In this subsection, we further analyze the effect of the
fine-tuning dataset on the backdoor purification efficacy. We
consider the following factors: overlapping fraction, negative
per positive class ratio, and number of malware families.

1) Effect of overlapping fraction fine-tuning dataset: In this
experiment, we study PBP under different ways of constructing
fine-tuning datasets, leading to three possible scenarios: (i) the
training dataset is completely unavailable during fine-tuning,
resulting in an overlapping fraction of 0 with the training data;
(ii) partial overlap between the original training dataset and
the fine-tuning dataset, where a certain positive portion of
the samples is reused to guide fine-tuning; and (iii) complete
overlap, where the entire fine-tuning data comes from the
original training data.

We iteratively replace a fraction of the fine-tuning dataset
with the corresponding number of samples from the training
set, such that the fine-tuning dataset size is constant. The
results of these scenarios are summarized in Table IX. We
report three metrics for each scenario: Clean Accuracy (C-
Acc), Attack Success Rate (ASR), and Defense Effectiveness
Rating (DER). As the fine-tuning and original training datasets
overlap increases, the results highlight that the performance
on clean data (BA) remains relatively unchanged across most
overlapping ratios. Interestingly, even with significant overlap
(0.8 or 1.0), the ASR metric does not exceed 0.03, and the
defense effectiveness rating is always greater than 98%. The
same observation is experienced with the EMBER dataset,

20

(a) FT (b) FT-Init (c) LP

(d) Fe-Tuning (e) FST (f) Ours

Fig. 14: Model activation of different fine-tuning methods on
targeted malware samples with and without the trigger on
AndroZoo dataset on the final layer.

TABLE IX: PBP’s efficacy with different overlapping ratios of
the fine-tuning dataset with the original training dataset.

Overlapping
Fraction

AndroZoo EMBER

C-Acc (↑) ASR (↓) DER (↑) C-Acc (↑) ASR (↓) DER (↑)

0.0 96.86 0.89 98.55 96.41 17.58 89.64
0.2 96.79 0.03 98.95 96.32 17.42 89.67
0.4 94.98 0.03 98.04 96.14 12.86 91.86
0.6 94.55 0.03 97.83 96.44 15.20 92.12
0.8 96.42 0.03 98.76 96.44 15.84 90.52
1.0 95.92 0.03 98.51 96.47 14.47 91.12

Backdoored 98.59 99.72 – 98.99 99.43 –

and reusing training data can help boost defense effectiveness
up to 3%. The analysis reveals two key insights. First, to
construct the fine-tuning dataset, we can reuse a part of the
training data, as long as we can ensure that it does not affect
negatively the performance on the benign task. Second, in most
cases, using the original portion of the training data helps
to achieve better performance of the backdoor purification
task, because it can simulate the learning process and the
relationship between benign and backdoored neurons during
the mask generation process. This finding suggests a prac-
tical approach to constructing fine-tuning datasets, allowing
defenders to combine original training data with new fine-
tuning samples for optimal results or addressing the difficulty
in collecting malware samples.

2) Effect of class ratio in the fine-tuning dataset: We
analyze the performance of PBP with different class ratios
with both datasets AndroZoo and EMBER. Specifically, we
modify the fine-tuning dataset to create different class ratios
between positive and negative samples. First, we analyze
the existing class distribution in the fine-tuning dataset and
calculate the number of positive and negative samples re-
quired to meet the target ratio, i.e., #Positive Samples =

class ratio
1+class ratio × total samples. If the fine-tuning dataset lacks
sufficient samples, additional samples are randomly selected
from the original training set, and a corresponding number
of the other class is removed to ensure the fine-tuned data
size is constant. The original class distributions of the two
datasets differ significantly, influencing the achievable class
ratios during training. In AndroZoo, the class ratio in the
training data is approximately 0.089 : 1, reflecting a strong

imbalance. Therefore, we vary the ratio from lower to higher
around the original training ratio to explore feasible ranges. In
contrast, the EMBER dataset has a balanced ratio of 1 : 1. For
EMBER, we decrease the original ratio, as it is impractical
for the number of malware samples to exceed the number
of goodware samples in real-world scenarios. This setting re-
sults in the following ranges: [0.01, 0.04, 0.08, 0.10, 0.12, 0.15]
for AndroZoo, centered around its original ratio, and
[0.10, 0.20, 0.40, 0.60, 0.80, 1.0] for EMBER, reflecting a con-
trolled reduction from the balanced distribution. The ex-
perimental results are summarized in Table X. Each row
shows the performance of PBP with different class ratios for
both datasets. AndroZoo, with its inherent imbalance, exhibits
higher variance in MA and BA across ratios. For the extreme
case, i.e., the negative samples account for less than 1% of the
fine-tuning dataset, the purification performance degrades by
half. In the favorable case (i.e., the negative samples account
for less than 10% - 15% of the fine-tuning dataset), the de-
fender can collect more positive samples, resulting in a higher
class ratio than the training ratio, which can indeed improve the
performance of PBP to 99.33% defense effectiveness. On the
other hand, with the EMBER dataset, since the original training
was conducted on a balanced dataset, reducing the negative
class ratio can reduce the fine-tuned model’s performance. In
conclusion, constructing a fine-tuned dataset with the close
class ratio as in the training can help improve the performance
of PBP.

TABLE X: PBP’s efficacy with different positive per negative
class ratios with both datasets.

Class
Ratio

AndroZoo Class
Ratio

EMBER

C-Acc (↑) ASR (↓) DER (↑) C-Acc (↑) ASR (↓) DER (↑)

0.01 96.12 49.15 74.04 0.10 83.21 35.02 74.32
0.04 96.92 0.14 98.96 0.20 94.02 21.31 86.58
0.08 96.86 0.89 98.55 0.40 95.81 25.92 85.17
0.10 96.90 0.27 98.88 0.60 95.87 29.03 85.20
0.12 97.53 0.00 99.16 0.80 96.93 20.79 88.29
0.15 97.26 0.07 99.33 1.00 96.41 17.58 89.64

Backdoored 98.59 99.72 – Backdoored 98.99 99.43 –

0

25

50

75

100

0.01 0.1 0.2 0.3 0.4 0.5
Family Ratio (:1)

A
S

R
 (

%
)

ASR DER

Fig. 15: ASR and DER
of PBP under varied fam-
ily ratio with AndroZoo
dataset.

TABLE XI: PBP’s efficacy with
different fine-tuning family ra-
tios with AndroZoo dataset.

Family Ratio C-Acc (↑) ASR (↓) DER (↑)

0.01 91.95 100.0 46.54
0.10 96.27 0.62 98.39
0.20 96.92 1.34 98.36
0.30 95.31 0.03 98.21
0.40 95.98 0.00 98.56
0.50 95.99 0.00 98.56

Backdoored 98.59 99.72 –

3) Effect of family ratio in the fine-tuning dataset: In this
experiment, we study the effect of the number of families
appearing in the fine-tuning datasets. This experiment is only
applicable to the AndroZoo dataset since in the version EM-
BER dataset following implementation of [14], the family
information is not used and not available. AndroZoo has a total
of 400 malware families and the training set has 323 families.
We set up this experiment by gradually increasing the ratio of
the number of families in the fine-tuning data per the number
of families in the training data from 0.01 : 1 to 0.5 : 1. The

21

default ratio of fine-tuning data in our setting is 0.30 : 1.
For a lower ratio, we randomly deleted a number of families
to match the desired ratio. For a higher ratio, we randomly
took 1, – the median family size in the dataset, samples per
additional family. If the family has less than 1 samples, all the
samples from it will be added to the fine-tuning set. The result
is shown in Table XI. The results indicate that PBP struggles
when the number of malware families is too small, such as in
the setting of 3 families at a ratio of 0.01 : 1. However, our
method demonstrates effective and stable performance starting
from a family ratio of 0.1 : 1, corresponding to 30 malware
families. Furthermore, some families contain only a single
sample, which enhances the feasibility of collecting malware
samples for the fine-tuning set in real-world applications.

0

25

50

75

100

0

25

50

75

100

0.001 0.02 0.04 0.05 0.06 0.08 0.1 0.15
Mask Ratio

A
S

R
 (

%
) D

E
R

 (%
)

ASR DER

Fig. 16: Backdoor purification efficiency with increasing mask
ratio k.

4) Analysis of local effect of backdoor attacks: In our ex-
periments, the default mask ratio k is set to 0.05, which means
top-5% neurons will be considered as “important” for learning
the dual objectives in Eqn. 4. The choice of k is critical for
achieving an optimal balance between backdoor mitigation and
maintaining the model’s clean accuracy (C-Acc). If k is set
too high, it risks over-pruning neurons, reducing the model’s
ability to classify benign inputs accurately, thereby degrading
C-Acc. Conversely, a small value of k fails to sufficiently prune
the backdoored neurons, leaving enough malicious pathways
intact for the backdoor to remain effective, which increases
the Attack Success Rate (ASR). To validate the effect of
different mask ratios, we conducted experiments with k values
in the range [0.001, 0.01, 0.02, 0.05, 0.1, 0.15]. The results are
presented in Fig. 16. As presented, a small mask ratio (0.001)
fails to remove the backdoor because it insufficiently prunes
the backdoored neurons, leaving enough malicious pathways
intact for the backdoor to remain effective. Conversely, a high
mask ratio (0.15) negatively impacts both the DER and C-Acc
by over-pruning, removing not only backdoored neurons but
also essential neurons responsible for benign model behavior.
This excessive pruning disrupts the model’s ability to correctly
classify benign inputs, resulting in degraded performance on
both the backdoor and clean tasks.

The explanation for this local phenomenon is that backdoor
attacks inherently require the adversary to strike a delicate
balance between implanting a malicious trigger and preserving
the network’s overall benign performance. The adversary needs
the model to maintain high performance on benign samples
to avoid detection. As noted in recent works [90, 14], if the

backdoor were to affect the entire network, it would risk
degrading the network’s performance on benign samples, rais-
ing suspicion. Therefore, by design, the backdoor is typically
restricted to a subset of neurons that respond only to specific
triggers, while leaving the rest of the network largely unaf-
fected. This localized impact confirms that backdoor attacks
target specific neurons associated with adversarial triggers,
rather than causing widespread disruption. Consequently, this
sparsity allows the network to continue performing its benign
task effectively, reinforcing the point that backdoor attacks
do not result in global behavioral changes. This sparsity of
backdoor effect is widely studied in related works [65, 58]
and is part of a crucial insight into our approach to identifying
and purifying these sparsely distributed neurons.

5) Additional Results with CNN: We incorporated an ex-
periment with CNNs to strengthen our work, given that CNNs
serve as fundamental building blocks in various architec-
tures(e.g., ResNet/Inception/YOLO, etc.), and demonstrating
PBP’s effectiveness by reducing ASR from 99% to 4%. This
performance is consistent across different adversary powers on
PDR. In the following section with backdoor attacks on the CV
domain, we further demonstrate that PBP can work with more
complicated structures such as ResNet and VGG.

TABLE XII: Performance of PBP under CNN model with
varied PDR.

Models 0.005 0.01 0.02 0.05

C-Acc ASR C-Acc ASR C-Acc ASR C-Acc ASR

Pretrained 99.07 66.79 99.24 94.06 99.11 97.74 99.12 99.97
Ours 97.84 1.59 97.87 4.70 97.76 3.45 97.55 4.00

The effectiveness of our method lies in three key aspects.
First, by identifying backdoor neuron masks layer-by-layer, our
approach ensures that the number of layers in the architecture
does not affect performance, making it scalable to complex
models. Second, we handle not only individual backdoor
neurons but also their interactions with benign neurons through
alternative optimization, allowing the method to adapt to
varying inter-layer dependencies. Third, the method leverages
the sparsity of backdoor neuron gradients, a phenomenon
consistently observed across different architectures [65, 54],
ensuring robust backdoor mitigation without compromising
clean accuracy.

E. Broader Application

We extend the experiments on CV, which is beyond mal-
ware classification tasks to further demonstrate the potential
efficacy of PBP. We selected three mainstream backdoor attack
methods including BadNet [28], SIG [91], and Blended [92].
The illustrative examples of these attack strategies are pre-
sented in Fig. 17. We selected FST as the baseline to compare
since this method showed its SOTA performance on backdoor
purification within the CV domain. The implementation is
inherited from the benchmark provided by Min et al. [59].
For each attack strategy, we vary both the PDR, which cor-
responds to the adversary power, and model architecture (i.e.,
ResNet-18 and VGG19 BN). From the results in Table XIII
and Table XIV, PBP achieves comparable or even better

22

(a) Original (b) BadNet (c) SIG (d) Blended

Fig. 17: Example images of backdoored samples from CIFAR-
10 dataset with 3 attacks.

performance than FST in many settings. Specifically, PBP
successfully mitigates ASR from 100% to as low as under
5%. With VGG19 BN model architecture in Table XIV, FST
shows the difference in reducing ASR between BadNet and
Blended attacks, i.e., ASR with 0.5% PDR with BadNet is
2% but the corresponding number with Blended is 28.19%.
The reason for this can be the different manners of these
two attacks, where the BadNet adds a small pattern to the
corner of images while Blended embeds the trigger to the
whole image. As a result, shifting the model parameters far
from the original one is not enough to address thoroughly the
relationships between backdoored and benign neurons caused
by these attacks. Meanwhile, PBP can purify the backdoors
better in this case, resulting in lower ASR. Under ResNet-18
(Table XIII), FST shows a more stable performance, which
aligns with the phenomenon observed in the original paper.
As noted by the authors, one possible reason is that the
classifier of VGG19-BN contains more than one layer which
is slightly different from our previously used structure ResNet-
18. In conclusion, our method is shown to be more stable with
comparable performance in CV applications.

The primary distinction between the backdoor purification
task in CV and the malware classification problem lies in
backdoor insertion and feature extraction. In CV applications,
the backdoor is inserted in such a way that the model learns
representations of backdoored samples in the hidden space,
making them resemble the targeted class. Consequently, meth-
ods that shift the representation learning mechanism of the
model, such as FST, tend to perform effectively. Conversely,
in malware classification, features of malware samples can
be extracted using third-party tools, allowing adversaries to
utilize these extracted features to craft poisoned samples. This
approach differs significantly from the CV domain, where the
goal is to manipulate the model’s representation of these fea-
tures directly. Instead of forcing the model to adjust its internal
representations for specific features, malware adversaries can
leverage pre-extracted features to create malicious samples,
highlighting the unique challenges in addressing backdoor
attacks in this domain. To this end, the performance of PBP
in an extended scenario demonstrates its potential application
in various domains and its broader impacts.

TABLE XIII: Defense results under various poisoning rates.
The experiments are conducted on the CIFAR-10 dataset with
ResNet-18. All the metrics are measured in percentage (%).

PDR Model BadNet SIG Blended

C-Acc ASR C-Acc ASR C-Acc ASR

0.005
No-defense 94.84 92.25 94.79 88.38 94.58 94.88
FST 92.47 0.56 92.26 1.99 91.77 1.56
PBP 92.23 2.17 91.94 0.07 91.37 3.50

0.01
No-defense 94.42 92.78 94.56 88.69 94.86 97.88
FST 92.05 1.04 92.82 0.23 92.24 5.48
PBP 91.31 1.73 92.10 5.88 92.00 3.37

0.02
No-defense 94.20 94.00 94.63 92.97 94.25 98.72
FST 91.61 0.74 92.29 0.72 91.83 4.08
PBP 91.15 1.10 92.00 8.48 91.25 4.90

0.05
No-defense 93.80 96.62 94.46 98.29 94.85 99.67
FST 91.25 1.23 92.16 0.07 92.38 11.19
PBP 91.59 1.17 91.42 0.50 91.64 4.71

TABLE XIV: Defense results under various poisoning rates.
The experiments are conducted on the CIFAR-10 dataset with
VGG19 BN. All the metrics are measured in percentage (%).

PDR Model BadNet SIG Blended

C-Acc ASR C-Acc ASR C-Acc ASR

0.005
No-defense 93.22 83.89 92.23 76.95 92.62 97.89
FST 88.49 2.02 87.29 17.14 88.79 28.19
PBP 88.97 2.44 86.47 0.82 87.25 10.32

0.01
No-defense 93.17 87.12 91.47 80.48 92.35 95.47
FST 89.04 1.53 87.01 13.12 88.67 29.10
PBP 88.90 2.00 86.27 4.02 88.70 9.40

0.02
No-defense 92.51 90.39 91.68 88.60 93.07 98.54
FST 88.23 2.13 87.00 6.18 88.94 24.75
PBP 89.26 2.41 86.11 1.83 88.73 5.21

0.05
No-defense 92.52 94.30 93.20 93.77 93.11 99.44
FST 89.10 2.61 88.65 8.73 89.81 23.99
PBP 88.51 3.03 87.40 0.65 89.63 4.63

23

	Introduction
	Background
	Backdoor Attacks
	Backdoor Countermeasures
	Backdoor Attacks and Countermeasures in Malware Classifiers

	Methodology
	Backdoor Neurons
	Threat Model and Problem Formulation
	PBP Approach
	Neuron Mask Generation
	Activation-shift Model Fine-tuning

	Experiments
	Experimental Setups
	Experimental Results
	RQ1: Can PBP purify the backdoor effectively on different backdoor attack strategies, and to what extent, compared to related fine-tuning methods?
	RQ2: Is PBP effective against backdoor attacks carried out by attackers with varying levels of strength?Can PBP purify backdoor attacks given different attacker power?
	RQ3: Can PBP purify the backdoor stably under different fine-tuning assumptions?
	RQ4: How is PBP's efficiency and sensitivity to its hyperparameters and model architectures?

	Discussion and Limitations

	Related Works
	Conclusion
	Appendix
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1) - Claim (C1)
	Experiment (E2) - Claim (C2)

	Notes

	Appendix B: Technical Appendix
	Training configurations
	Proof of convergence
	Additional Results
	Additional Analysis
	Effect of overlapping fraction fine-tuning dataset
	Effect of class ratio in the fine-tuning dataset
	Effect of family ratio in the fine-tuning dataset
	Analysis of local effect of backdoor attacks
	Additional Results with CNN

	Broader Application

