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ABSTRACT

This survey provides an overview of different cyber moving-target techniques,
their threat models, and their technical details. A cyber moving-target technique
refers to any technique that attempts to defend a system and increase the complexity
of cyber attacks by making the system less homogeneous, static, or deterministic.
This survey describes the technical details of each technique, identifies the proper
threat model associated with the technique, as well as its implementation and op-
erational costs. Moreover, this survey describes the weaknesses of each technique
based on the current proposed attacks and bypassing exploits, and provides possible
directions for future research in that area.
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1. INTRODUCTION

This survey provides an overview of different cyber moving-target techniques, their threat
models, and their technical details. A cyber moving-target technique refers to any technique that
attempts to defend a system and increase the complexity of cyber attacks by making the system
less homogeneous, static, or deterministic [1]. In this survey, we describe the technical details of
each technique, identify the proper threat model associated with the technique, and identify its
implementation and operational cost. Moreover, we describe the weaknesses of each technique
based on the current proposed attacks and bypassing exploits, and provide possible directions for
future research in that area.

1.1 TAXONOMY OF MOVING-TARGET TECHNIQUES

We identified five top-level categories and two subcategories of moving-target techniques.
Figure 1 illustrates these categories. Here we give a short description for each category.

1. Dynamic Data: Techniques that change the format, syntax, encoding, or representation of
application data dynamically.

2. Dynamic Software: Techniques that change an application’s code dynamically. The change
includes modifying the program instructions, their order, their grouping, and their format.

3. Dynamic Runtime Environment: Techniques that change the environment presented to
an application by the operating system during execution dynamically.

(a) Address Space Randomization: Techniques that change the layout of memory dy-
namically. This can include the location of program code, libraries, stack/heap, and
individual functions.

(b) Instruction Set Randomization: Techniques that change the interface presented to
an application by the operating system dynamically [2]. The interface can include the
processor and system calls used to manipulate the I/O devices.

4. Dynamic Platforms: Techniques that change platform properties (e.g., CPU, OS) dynam-
ically. This includes the OS version, CPU architecture, OS instance, platform data format,
etc.

5. Dynamic Networks: Techniques that change network properties including protocols or
addresses dynamically.

1.2 TAXONOMY OF ATTACK TECHNIQUES

The effect of each moving-target technique is described in terms of the attack technique that
it mitigates. Here we provide a brief definition for the attack techniques used in this report. The
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Figure 1. Different categories of moving target techniques.

taxonomy of attacks is a customized version of the Common Attack Pattern Enumeration and
Classification (CAPEC) attack categories [3].

1. Data Leakage Attacks: Attacks that actively target important information on a system
(e.g., leakage of cryptographic keys from memory).

2. Resource Attacks: Attacks that exhaust or manipulate shared resources in a system (e.g.,
denial-of-service using CPU saturation).

3. Injection: Attacks that force malicious behavior in the system.

(a) Code Injection: Attacks that force malicious behavior in the system by inserting
malicious code (e.g., buffer overflow and script injection; SQL injection).

(b) Control Injection: Attacks that force malicious behavior in the system by manipulat-
ing the control of the system and without malicious code. Control can include timing,
ordering, and arguments of different operations. (e.g., chaining existing code snippets
together to achieve malicious behavior (return-oriented programming (ROP) [4]).

4. Spoofing: Attacks that fake identity of a user or a system (e.g., man-in-the-middle attack;
phishing attack).

5. Exploitation of Authentication: Attacks that compromise explicit or implicit authenti-
cation processes in a system (e.g., cross-site scripting).

6. Exploitation of Privilege/Trust: Attacks that misuse granted privileges (e.g., session
hijacking).



7. Scanning: Attacks that collect information passively or non-intrusively (e.g., port scanning).

8. Supply Chain/Physical Attacks: Attacks that target supply chain or physical security of

1.3

a system (e.g., malicious processor).

TAXONOMY OF ENTITIES PROTECTED

Each moving-target technique is designed to protect specific entities in a system. Here we

provide a taxonomy of entities protected by the techniques we analyze in this survey.

1.4

. Applications: All or specific applications are protected from network entities or other appli-

cations running on the same system (e.g., protecting application memory location from other
applications; protecting database applications).

. Operating System: The operating system is protected from network entities or malicious

applications running on top of it. This protection usually attempt to prevent privilege es-
calation or access to the kernel-space and other applications (e.g., sandboxing suspicious
applications).

. Machine: All or specific types of machines (also called clients, hosts, or servers) are protected

from other network entities (e.g., changing the IP addresses to make scanning more difficult;
protecting web servers behind a firewall).

. Network: A network or subnet is protected from other networks (e.g., dynamically changing

IP address on the VPN gateway to protect against malicious connections).

. Traffic: Confidentiality and/or integrity of all or specific types of network traffic is protected

(e.g., dynamically changing protocols to make traffic injection more difficult).

. Session: A set of user operations (a session or a transaction) is protected from other untrusted

operations (e.g., a secure web transaction is protected from other web pages browsed on the
same machine).

Data: Confidentiality or integrity of data handled by applications or stored on the machine
is protected (e.g., changing data encoding to prevent malicious data modifications).

CYBER KILL CHAIN

Each moving-target technique is focused on disrupting certain phases of a successful attack.

For instance, while a technique may make it less likely for an exploit to succeed during launch,
another focuses on making information collection on the target more challenging. In this survey,
we try to identify the phase of an attack each technique is targeting. These phases are also referred
to as the cyber kill chain.

1. Reconnaissance: The attacker collects useful information about the target.
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Figure 2. Cyber kill chain.

2. Access: The attacker tries to connect or communicate with the target to identify its prop-
erties (versions, vulnerabilities, configurations, etc.).

3. Exploit Development: The attacker develops an exploit for a vulnerability in the system
in order to gain a foothold or escalate his privilege.

4. Attack Launch: The attacker delivers the exploit to the target. This can be through a
network connection, using phishing-like attacks, or using a more sophisticated supply chain
or gap jumping attack (e.g., infected USB drive).

5. Persistence: The attacker installs additional backdoors or access channels to keep his per-
sistence and access to the system.

Figure 2 illustrates the cyber kill chain used in this survey. We choose this kill chain because
it is well suited for the types of protections offered in moving-target defenses. There are other types
of kill chains proposed in the literature that are better suited for specific domains in cyber. They
include cyber war kill chain (phases: reconnaissance, weaponize, delivery, exploit, install, command
& control, and act on objectives), action-oriented kill chain (phases: deter, protect, detect, react,
and survive), detection kill chain (phases: herd, perturb, disturb, etc.), and others.

1.5 TAXONOMY OF WEAKNESSES

When identifying the weaknesses associated with each moving-target technique, we consider
four types of weaknesses that can make the technique ineffective. One or all of these weaknesses
can exist in a technique and any of them can defeat the purpose of that technique.

1. Overcome Movement: With this weakness, the movement happens and the pattern of
movement is random or controlled, but the adversary can still attack the surface protected
by the MT technique. For example, injecting many copies of the exploit to overcome address
space randomization is a form of overcoming the movement.

2. Predict Movement: With this weakness, the movement happens and the pattern of move-
ment is random or controlled, but the adversary can still attack the surface protected by the
MT technique. For example, leaking addresses to predict the location of libraries is a form of
predicting the movement in address space randomization.



MT technique. For example, leaking addresses to predict the location of libraries is a form of
predicting the movement in address space randomization.

3. Limit Movement: With this weakness, the movement happens, but the pattern of move-
ment is limited by the adversary’s actions. For example, the adversary can fill up memory to
limit the randomness in address space randomization (a.k.a. code spraying).

4. Disable Movement: With this weakness, the adversary explicitly disables the movement.
For example, address space randomization can be disabled in the OS by pushing a bad
configuration.

1.6 SCOPE

This survey provides a complete representative set of moving target techniques from open and
public sources of information. Specifically, the techniques described herein were identified through
a comprehensive literature review. We manually reviewed the proceedings of the top six security
conferences, ACM CCS, IEEE S&P, NDSS, USENIX Security, ACSAC, and RAID to identify all
relevant moving-target techniques. Furthermore, we performed keyword searches of the ACM and
IEEE databases, as well as more general scientific databases. Finally, we conducted Google searches
to find any remaining papers, as well as commercial products leveraging moving-target defenses. All
together, this search identified over 100 sources published after the previous version of this survey
in 2011 [5]. From these sources, we added 52 new techniques to this document for this version.
This document focuses specifically on techniques for cyber moving targets, so papers that did not
present new techniques, but instead conducted analysis, meta-analysis, or evaluations of existing
techniques, were not specifically incorporated into this document. Furthermore, there are several
papers that present similar techniques, or extensions to previous techniques, and were therefore
merged herein for clarity.

Although we expect that there are other commercial products or academic projects with
different names that implement similar moving-target techniques or some combination thereof, to
the best of our knowledge, they are not fundamentally different in their concepts and workings
from the techniques presented herein.

1.7 ORGANIZATION

The rest of this document is organized according to the moving-target-techniques taxonomy
described earlier. We summarize each technique, as well classify the technique against the tax-
onomies described above. We also present relevant details pertaining to the threat model the
technique defends against; the entities that are protected by the technique; any details pertaining
to how the technique can be deployed, including any interdependencies among different techniques;
any overhead associated with the technique; the system components that must be modified to use
the technique in production; the complexity of implementing and operating the technique; the
phase(s) of the cyber kill chain that the technique helps mitigate; the weaknesses of the technique;
the impact the technique has on the attacker; any opportunities that we identified as avenues for



further research; the availability of the technique; the funding source of the research that developed
the technique; and any other miscellaneous considerations or notes that we found relevant to the
technique. In addition, we highlight the costs to deploy each technique, the complexity of both
implementing and operating each technique, and which aspect of the cyber kill chain the technique
targets.



2. DYNAMIC DATA

2.1 DATA DIVERSITY THROUGH FAULT TOLERANCE
Defense Category: Dynamic Data
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Resource

Details: This technique [6] was not designed to fight malicious input directly but it is more
focused on unintentional faults. Since it reprocesses data and votes on the results, it could help
combat an attacker that is trying to manipulate or corrupt the output of a program or service.

Description:

Details: This technique aims to increase the fault tolerance of an application by reevaluating
the input to a program using a different algorithm. These different algorithms can produce exact
equivalent output or they could be general algorithms that produce approximations of the original
output. The idea is a possible fault or corner-case for a specific input might be avoided if it is
calculated in a slightly different or semantically equivalent fashion. The technique builds on the
idea of N-version programming but uses a data-centric version of it the authors refer to as N-copy
programming. Input is passed into independently developed versions of a program. The output of
these is then passed to a voter that decides if the input is acceptable. If the output does not look
acceptable, a new algorithm is chosen to process the input and the cycle is done again. If exact
algorithms are being used, the voter can use the majority output as the good output. If it switches
to more generic algorithms that produce approximations, then the voting can become subjective
because the copies could produce different results that are still acceptable.

Entities Protected: This technique aims to protect a program by ensuring the output is
acceptable.

Deployment: This would be implemented into the code of a program on a system.
Execution Overhead:
e There may be some additional processing overhead imposed if the program needs to reprocess
the input
e Running multiple copies of a program and waiting for voting results will add additional
overhead

Memory Overhead:

e Extra memory used by running multiple versions of the program (roughly N times for N
copies)



Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

X Data

X Source Code

O Compiler/Linker
0 Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
Kill-Chain Phases:

0 Reconnaissance

O Access



X Exploit Development
O Attack Launch

O Persistence

Interdependencies: The technique assumes that N different (independent) versions of the algo-
rithm can be built.

Weaknesses: This technique relies on voting so it is still possible for an attacker to corrupt all or
the majority of the processes in order to bypass the added protection. It may also still be possible
for an attacker to create output that still looks valid to the output checker so it is not rerun again
with different algorithms. Another possibility is that the differing algorithms might have no effect
on the malicious input.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
[0 Limit Movement

0 Disable Movement

Impact on Attackers: If an attacker is attempting to corrupt or manipulate the output of a
program, this could make it more difficult. The technique is mainly focused on integrity protection.
If the algorithms used to process the input are not sufficiently different between retries, an attacker
may still be able to complete their objective. If an attacker can accomplish their goals without
needing the programs to output, this may not have much of an impact.

Availability: This technique was tested by the authors but does not appear to be publicly avail-
able.

Additional Considerations: Creating a component that can accurately detect the validity of
the output could be difficult for a program or service with varying and dynamic output. Also
developing N different algorithms is time consuming and requires redevelopment of an application.

Proposed Research: Some problems would need to be solved to make this technique more
reasonable. One of those is coming up with a reliable way to determine if output of a program is
valid. There are many applications and services now that have very dynamic and varying outputs
so it may not be trivial to determine if output is valid. The same can be true for the varying
input processing algorithms. It may not be an easy task to develop multiple ways to process the
input inside of the application. It may also not be an option to use more approximate methods
if the accuracy of the output is important. Automating the diversification of an algorithm is an
important future direction.

Funding: NASA



2.2 REDUNDANT DATA DIVERSITY
Defense Category: Dynamic Data
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Resource and Code Injection

Details: This technique [7] aims to help mitigate attacks that target specific data inside of
an application by way of malicious input. Each variant is running a different transformation of the
data such that one input would not be able to change all variants. This would cause a divergence
and it would be detected by the variant monitor. The change can also be done at a lower level
separating the address space of each variant or running each variant with different instructions.
This helps mitigate some code injection attacks or injection attacks that rely on specific memory
addresses.

Description:

Details: This technique is a variation of the N-variant programming technique. It involves
running multiple copies of a program that each run transformations of the original data being
protected without having to rely on secrets. These transformations should be semantically equiva-
lent and reversible. A monitor can watch the values of the data in each variant to detect if there
is a divergence and take appropriate action. This can be implemented on different levels such
as having variants use different memory address spaces, different instructions, or different data
representations.

The specific method for this technique analyzed was using different data representations.
This was implemented to protect user identification (UID) and group identification (GID) that
are used for determining permissions. This is implemented into the system kernel, new system
calls are created to allow for synchronization, and other system calls are modified accordingly to
support the modified data. Each variant is modified to use new system calls for synchronization
and to support the new UID and GID representations. The variants synchronize on system calls.
Whenever one variant reaches a system call, it waits for the other to reach it as well. The inputs
to the system calls are verified before execution. The system call is only executed once and the
results are passed to each variant if it was an I/O-based system call. If the program uses external
file, such as configuration files, a new one is created and tailored toward the specific variant. If the
program used the password file on the system and it contained some of the data being randomized,
a new password file would need to be created for each variant.

Entities Protected: This technique aims to protect data entities inside of a running program
on systems.

Deployment: Depending on the types of data being protected, it could be deployed at
different levels. The implementation described is implemented into the operating system kernel.

Execution Overhead:

10



e Running the Apache Web Server unsaturated with 2-Variant UID imposed a 13% throughput
overhead and 14% latency overhead.

e Running the Apache Web Server saturated with 2-Variant UID imposed a 58% throughput
overhead and 135% latency overhead.

Memory Overhead:
e There will be additional memory used by running multiple variants simultaneously
Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

] Data

X Source Code

O Compiler/Linker
X Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless

11



O Simple Configuration
O Complex Configuration (System Admin)

[J Expert Operator
Kill-Chain Phases:

O Reconnaissance
O Access
X Exploit Development

O Attack Launch

[0 Persistence

Interdependencies: This should not be combined with diversity techniques that change the
behavior of the program or make it perform semantically different. Such a technique would cause
a divergence that would trigger a detection in their monitor.

Weaknesses: An attacker could still target data parts of an application that are not randomized if
they can be used to mount an attack. An attacker could also try to use advanced control-injection
attacks that could still potentially affect many or all variants. Also the technique proposed is very
limited in scope (only a very small portion of data on the system is randomized).

Types of Weaknesses:

X Overcome Movement
X Predict Movement
O Limit Movement

] Disable Movement
Impact on Attackers: This could make it much more difficult for an attacker to corrupt certain
important parts of an application if it was being protected properly by this technique.
Availability: This technique was prototyped by the authors but was not publicly released.

Additional Considerations: Techniques like this would have a larger overhead for computation-
intensive programs. Each variant would have to do the expensive computations. In addition, it
can be very challenging to expand this technique to the majority of data being processed on the
system. There was no mention of recovery if the monitor detects something malicious.

Proposed Research: This technique was currently only implemented to protect data inside of
the application. It could be extended to include some of the lower-level diversification techniques

12



also described in the paper such as instruction set tagging and address space separation. This
would make the application more resistant to different code injection attacks but would also add
additional execution overhead as well. Additional research may also be needed to overcome possible
false positive detections due to accidental divergences. These could happen because of operating
signals reaching variants in different positions of execution.

Funding: National Science Foundation
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2.3 DATA RANDOMIZATION
Defense Category: Dynamic Data
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [8] helps protect against code-injection attacks by randomizing any
code injected into the program. All data that is written to memory within a certain class is
randomized with a random key. This also helps protect against attacks that target pointers in
general such as function pointers or return addresses. These would also be randomized by this
technique using different keys. In addition, this technique would also provide some protection from
attacks that attempt to read or write arbitrary memory locations. Any functions that attempted
to write something would have that randomized as it was put into memory and reading arbitrary
memory locations would result in that data being randomized with the key.

Description:

Details: This is a compiler-based technique that provides probabilistic protection by ran-
domizing all the data that it stores in memory. All operands in a program within a class that
read and write memory are instrumented to perform an XOR of the data with a random key. All
operands that reference the same objects are grouped together. Each of these groups is randomized
with a different key that is generated when the program is started. These groups are found during
compile-time by using static analysis within the compiler. To improve performance, operands that
are classified as safe are not instrumented. An operand is considered safe if runtime access to that
operand can never violate memory safety. The compiler will then insert instructions that perform
the XOR operations for reading and writing to memory in the appropriate locations. This tech-
nique also supports libraries. Wrappers can be created for the library functions and system calls
that receive or return pointers.

Entities Protected: This technique protects the data applications store in memory.

Deployment: This technique would be implemented in a compiler on a system. Each
program that wanted to use this technique would need to be compiled with this new compiler.

Execution Overhead:

e The average overhead for the tested benchmarks was 11% but it can be a wide range in either
direction.

Memory Overhead:
e The tested benchmarks had an average memory overhead of 1%.

Network Overhead:

14



e None
Hardware Cost:

e None
Modification Costs:

O Data

X Source Code

X Compiler/Linker
[J Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
0 Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

0 Reconnaissance
O Access

X Exploit Development

15



O Attack Launch

O Persistence

Interdependencies: A good source of randomness for the key generation.

Weaknesses: It is still possible for an attacker to guess the randomization key to be able to
read /write data to/from memory (technique assumes memory secrecy). It is also still possible to
attempt to brute force the desired keys. This could result in a large number of program failures
that would increase the probability of detection. An attacker may also be able to get to the desired
memory object if there is a vulnerability in the same group of operands since they would use
the same key. In order for this to be effective, it requires that all libraries also be protected via
wrappers. If any libraries are overlooked, that opens the possibility to bypass this technique.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
[0 Limit Movement

0 Disable Movement

Impact on Attackers: This technique would make exploiting a protected application more dif-
ficult. An attacker would have to find a method to either leak the keys or guess the keys used to
randomize the data.

Availability: This technique was prototyped by the authors but was not publicly released.

Additional Considerations: It requires program recompilation. The size of the programs in-
creased by averages between 15% and 30%. Applying this technique to a wide range of programs
can make it impractical.

Proposed Research: One larger direction this technique could take would be to combine with
other memory protection techniques such as Address Space Randomization. This would put further
burden on the attacker that is trying to execute low-level attacks. Also it would be important to
study what types of attacks can be mounted without crossing the groups (classes).

Funding: Microsoft Research
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2.4 END-TO-END SOFTWARE DIVERSIFICATION
Defense Category: Dynamic Data, Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection and Exploitation of Authentication

Details: This technique [9] has the potential to defend against different levels of code injec-
tion as well as some authentication attacks. Randomizing the instruction sets, script Application
Programming Interface (API) randomization, randomizing the reference names of stored data, and
randomizing components of code can help fight high-level code injection attacks like Structured
Query Language (SQL) injection attacks as well as low-level code injection attacks that target the
internal application. They can also help fight attacks that compromise authentication like Cross-
Site Scripting (XSS) attacks that might try to inject code at a high level. Other diversification
methods that can be used with this technique can help mitigate injection at additional levels.

Description:

Details: The idea of this technique is to compose many different randomization methods
and apply them to aspects of a service that does not affect the functionality of the program. This
would involve building functionality into the core or subsystems of a service that allows various
aspects to be randomized. The example in the paper is diversifying an Internet service. Some
of the proposed diversification methods include changing Hypertext Transport Protocol (HTTP)
keywords/syntax/headers/content encoding, Hypertext Markup Language (HTML) Document Ob-
ject Model (DOM) structures/identifiers, Structured Query Language (SQL) keywords/syntax,
database server instruction set/Internet Protocol address/port number/memory layout, database
table names/column names, web server instruction set/memory layout, and local files used by the
servers. There are other aspects of such a service that could also be diversified while not directly
affecting the service functionality. Each method of diversification would have its own side effects
and performance implications. There may also be other parts not identified that could also be used
for diversification and coming up with a complete list is a difficult problem. The number and type
of things that can be diversified will depend on the desired service and the software being used to
provide that service. Another aspect of this technique is how often the randomization happens. In
the case of a web service, it can be set up so that each user instance has a different randomization
plan. It could also be implemented that each user request causes a new randomization of some of
the methods.

Entities Protected: This technique aims to protect a web server.
Deployment: This would be deployed on a server.

Execution Overhead:
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e This will vary with the number and type of diversification techniques implemented. Low-
level emulated instruction randomization techniques would have a much higher overhead
than randomizing the table names in a database. The overhead may be significant.

Memory Overhead:

e This will also depend on the diversification techniques implemented. If memory layout ran-
domization is enabled, this could impose some overhead depending how it is implemented.

Network Overhead:

e Depending on the transformations applied to network protocols, this could increase the size
of network traffic or increase the processing time of the traffic.

Hardware Cost:
e None
Modification Costs:

X Data

X Source Code

X Compiler/Linker
X Operating System
[0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
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O Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

0 Reconnaissance

[0 Access

X Exploit Development
X Attack Launch

[ Persistence

Interdependencies: Not all combinations may be desirable. Combining methods of randomiza-
tion could affect the application in undesirable or unexpected ways. Certain combinations could
also result in a large overhead.

Weaknesses: Weaknesses associated with this technique will vary depending on the randomization
techniques implemented. Each technique will have its own weaknesses associated with it and com-
bining techniques could introduce additional weaknesses not present in the independent methods.
Some randomization methods may be limited by factors in the system such as the architecture.
Despite all randomization, a higher level protocol may be vulnerable to attacks.

Types of Weaknesses:

X Overcome Movement

X Predict Movement

X Limit Movement

X Disable Movement
Impact on Attackers: If that attacker can leverage vulnerabilities in a service that allow him
or her to take control of the flow of the program, he or she could still leverage more advanced

techniques that do not rely on code injection. Implementing many of these methods will increase
the amount of work an attacker has to do to exploit the system.

Availability: This was a research idea by the authors and did not appear to be implemented or
made available

Additional Considerations: The paper lacks many specifics. It is only applied to a web server.
The actual impact of randomization in unknown. The overhead can be very large. Modify-
ing the code to support all these additional randomization abilities could introduce additional
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bugs/vulnerabilities. Modifying the code to support all these additional randomization abilities
could increase the maintenance complexity of application. Determining which components and
subcomponents of an application or service could be a difficult and time-consuming task. The
proposed randomization methods do not fix security vulnerabilities or other logic errors that are
part of the design of the software. A similar technique is proposed in [10].

Proposed Research: This technique proposes many possible ways a specific web service could
be randomized. Coming up with a method to identify and test these methods is not an easy task.
Any part that is overlooked could become a potential attack vector. Determining which of these
methods can be safely combined could also be a difficult task. It could be the case that combining
two methods result in something breaking elsewhere in the service or system. Certain techniques
will also have varying impacts on performance and the combination of different methods could
cause unexpected performance issues. Overall, the composition of different randomization and
diversification methods would need to be further researched for this technique to be more feasible.

Funding: Unknown
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2.5 DIGLOSSIA
Defense Category: Dynamic Data
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: SQL Command Injection

Details: This technique [11] is designed to detect SQL and NoSQL command injection via
user-provided input. The basic technique is extendable to other formats vulnerable to this type of
command injection.

Description:

Details: This technique detects SQL and NoSQL command injection by dynamically remap-
ping all SQL/NoSQL queries to shadow character sets immediately before query processing, pre-
serving all user-provided input in its original character set. This serves as a type of lightweight
taint tracking, and enables a comparison between the original query and the final user-tainted
query using a technique called dual parsing. If the dual results of such parsing are not “syntacti-
cally isomorphic” or if any command sequences are recognized as being user-provided by virtue of
appearing in the original character set rather than the shadow character set, command injection
is declared and appropriate action can be taken. This technique is designed to be complementary
to SQL/NoSQL input sanitization and serves as a backstop to those techniques at the interpreter
level if the original program code does not follow best practices.

Entities Protected: Applications running in interpreted environments that take user-
provided inputs as parameters to SQL or NoSQL queries.

Deployment: This technique was prototyped as a modification to the PHP interpreter and
invoked by webserver requests. It could presumably be implemented in other runtime interpreters
for languages other than PHP.

Execution Overhead:

e Maximum of 13% overhead in testing; on the order of 1-2 milliseconds.
Memory Overhead:

e Not specifically measured or discussed, but likely negligible.
Network Overhead:

e None

Hardware Cost:
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e None
Modification Costs:

] Data

O Source Code

X Compiler/Linker
0 Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
[J Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[0 Access

O Exploit Development
X Attack Launch

O Persistence
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Interdependencies: None, but could conflict with other language-interpreter modifications

Weaknesses: This technique cannot be used where commands are expected to be part of the
provided input. Although acting on user-provided commands is typically regarded as poor pro-
gramming practice, it has use in certain application areas and is found in the wild. Because the
defense is implemented at the program-interpreter level, such programs could not be used on the
modified interpreter, or that interpreter would have to support the selective disabling of the defense.
The defense must be implemented per-interpreter or per-runtime environment. The technique can-
not detect the use of integer literals as command parameters, considered by some to be a form
of command injection. If input-tainted strings are passed to entities outside the environment, the
tracking becomes imprecise and may allow attacks to pass undetected.

Types of Weaknesses:

O Overcome Movement
O Predict Movement
X Limit Movement

O Disable Movement

Impact on Attackers: Attackers are unable to perform SQL/NoSQL command injection on
applications protected by this technique, provided that the queries are not partially handled by
outside entities.

Availability: System is not publicly available.

Additional Considerations: The performance overhead for this technique is acceptable for net-
work applications where a 1-2 millisecond delay is easily lost in overall network timing, but would
quickly become overwhelming in a locally run query-intensive application.

Proposed Research: SQL command injection is a well-studied area and the need for input
sanitization is well-known. Implemented in the interpreter, this technique serves as a backstop for
coding best practices in sanitization. Further research to generalize the technique to a broader
range of environments would help make it more widely applicable.

Funding: National Science Foundation
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2.6 NOMAD
Defense Category: Dynamic Data
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Automated Web Bots

Details: This technique [12] is designed to thwart web bots that automate certain tasks
and activities, such as account registration and forum posting, that are properly intended to be
performed by humans. It targets simple bots relying on HTML metadata by randomizing HTML
elements without hindering normal human activities.

Description:

Details: This technique prevents simple web bots from performing certain classes of unde-
sirable activity, such as spamming comment forms or automatic web-based games, by randomizing
HTML element names in served web pages. Because humans interact only with rendered content
while web bots often rely on the metadata encoded within raw HTML, there should be no impact to
human use of such sites while web bots become confused and are unable to perform their intended
task. The HTML element names rotate on a regular basis in order to prevent a bot from “learning”
the updated names of the elements. This technique is implemented either as a web server compo-
nent or as an independent stand-alone proxy that dynamically rewrites HTML as data is passed
through. Neither the primary content nor the Document Object Model of the page are modified.

Entities Protected: Web forms that are not intended to be automated.

Deployment: This technique can be deployed as a modification to webservers, or as a web
proxy.

Execution Overhead:

e Average overhead of approximately 14%; maximum overhead around 30%
Memory Overhead:

e Not reported, but not expected to be significant
Network Overhead:

e Average webpage size increases by around 100 bytes in experimentation.
Hardware Cost:

e None
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Modification Costs:

X Data

0 Source Code

O Compiler/Linker
[J Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[0 Access

X Exploit Development
X Attack Launch

[ Persistence

Interdependencies: Handling encrypted webpages requires implementation in the webserver or
a man-in-the-middle web proxy.
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Weaknesses: This technique assumes that web bots remain relatively unsophisticated, and rely
solely upon HTML metadata in form submission. While this is largely true in today’s web bots, this
lack of sophistication is only because it is currently unneeded, not because it is particularly complex
to implement. Analysis of labels, locations, the Document Object Model, expected behaviors, and
cross-request comparisons are all relatively straightforward paths to circumventing this defense.
Because the intent is to provide a seamless experience for human users, there are sharp limits on
the randomization that may take place. In particular, any given site can be automated with only a
moment or two for a human operator to identify key features and turn the bot loose. The defense
is best implemented as a proxy, but cannot randomize encrypted web pages — a common feature
in web forms — from that location.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: Attackers cannot use the simple web bots that are currently widely used,
and must upgrade to more complex web bots.

Availability: Not publicly available
Additional Considerations: None
Proposed Research: None

Funding: Qatar National Research Fund
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2.7 HERMES
Defense Category: Dynamic Data
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Cross-Virtual Machine Cryptographic Key Theft

Details: This technique [13] is intended to prevent attackers from stealing public keys used
to create SSL/TLS (and other) cryptographic keys from uncompromised virtual machines in en-
vironments where multiple virtual machines, some potentially malicious, are hosted on the same
shared hardware infrastructure.

Description:

Details: This technique splits cryptographic keys across multiple virtual machines (VMs)
using random shares that periodically rotate. The purpose of this action is to prevent cross-VM
attacks that can infer the memory contents of a VM resident on the same hardware. Such attacks
have been demonstrated as being practical. The random shares are created with Distributed RSA
and Threshold RSA, ensuring that the individual shares are valueless on their own, and re-create
and re-distribute the shares periodically to thwart long-term attacks. It is implemented as a library
function that is transparent to the main application for SSL connections. This technique is intended
to run on large distributed cloud systems (such as EC2) where multiple VMs are expected and the
environment is relatively unconstrained. Individual session keys are not protected because of their
short-duration lifespan combined with the difficulty of maintaining a persistent session without
immediate access to the key at all times. Keys are rotated on a wall clock cycle, customizable by
the operator and tested with periods from 5 to 125 seconds by the developers.

Entities Protected: Public cryptographic keys
Deployment: An updated version of then OpenSSL library, in this implementation

Execution Overhead:
e Key resharing takes up to 50 milliseconds.
Memory Overhead:
e Not discussed, but likely negligible
Network Overhead:
e Proportional to number of connections up to network saturation

Hardware Cost:
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e None, but performance improves with additional VM resources
Modification Costs:

X Data

X Source Code

O Compiler/Linker
0 Operating System
] Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
[J Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

J Reconnaissance
O Access
O Exploit Development

X Attack Launch

X Persistence
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Interdependencies: None beyond cloud deployment requirements

Weaknesses: This technique has two primary weaknesses. First, there has been no analysis of
how much time is necessary to steal cryptographic key shares from a VM. The key-rotation interval
of 5 to 125 seconds is explained purely in terms of performance rather than security, and it is
unclear as to what amount of wall clock time is actually necessary, or even indeed whether wall
clock time is the correct measure in the first place. Without this analysis, the efficacy of this
approach against real-world exploits is undetermined. Second, the initial system bootstrapping
process requires uncompromised SSL channels between the virtual machines in order to establish
the initial key share. If those channels are compromised, or if the share can be delayed until the
key can be stolen from the initial VM, compromise is achieved. A minor weakness is that VMs
continue to use old shares until all VMs have confirmed receipt of the new shares upon a rekeying
cycle. If an attacker can delay the acknowledgment of a new key by one or more VMs, the old
shares continue in use and remain present in memory.

Types of Weaknesses:

O Overcome Movement
O Predict Movement
X Limit Movement

X Disable Movement

Impact on Attackers: Attackers who encounter this system face a much more difficult task to
acquire cryptographic keys.

Availability: No code is publicly available.
Additional Considerations: None

Proposed Research: Improvements to the bootstrapping process and a formal analysis of ap-
propriate key rotation times would significantly advance cross-VM security methods not only for
cryptographic keys, but for other sensitive data.

Funding: Air Force Office of Scientific Research, National Institutes of Health Grants, National
Science Foundation, Army Research Office
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2.8 CONTENT RANDOMIZATION OF MICROSOFT OFFICE DOCUMENTS
Defense Category: Dynamic Data
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Malicious Microsoft Office Documents

Details: This technique [14] is designed to block certain attacks embedded in Microsoft Office
OLE- and OOXML-formatted documents. It can be employed at any time in the lifespan of the
document.

Description:

Details: This technique randomizes the layout of OLE- and OOXML-formatted Microsoft
Office Documents to break certain embedded exploits while preserving document structure and
logical connections. It takes advantage of the fact that OLE and OOXML formats are containerized
and their components can be freely reordered without breaking the ability of Office to parse and
manipulate the document. Because malicious embeds inside Office documents frequently depend
upon a particular ordering of internal components, the randomization prevents the exploits from
executing. Content randomization can occur at any point, including when saving the document,
when opening the document, or at any intermediate point between those events. The technique is
not perfect and does not block all malicious documents, but is relatively non-invasive and has only
minor compatibility interference. Randomization of the (legacy) OLE format is more comprehensive
and effective than that of the (newer) OOXML format, but both offer protections.

Entities Protected: Microsoft Office applications

Deployment: This technique can be implemented in locations as convenient, including end-
point machines opening the documents or on web gateways or file servers hosting such documents.

Execution Overhead:

e Randomization time of a document is minor; it is approximately comparable to an antivirus
scan of the file.

e No additional time is required to open an OLE document.

e About 2.9% more time is required to open an OOXML document.
Memory Overhead:

e Not studied, but likely negligible
Network Overhead:

e None
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Hardware Cost:
e None
Modification Costs:

X Data

O Source Code

O Compiler/Linker
0 Operating System
U Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[0 Access

O Exploit Development
X Attack Launch
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[ Persistence

Interdependencies: None

Weaknesses: This technique does not block all malicious documents, but only certain types of
them. Additionally, it may be possible to modify some of the blocked documents to reduce the
complexity of the exploit and shrink the footprint, such that randomization does not occur at the
level required to break an attack. It may be possible to modify the technique’s container size to block
smaller fragmented malicious payloads, but no information is available on the countermeasures that
malware could take in response. The authors also note that certain documents appear to fail the
Office integrity checks and thus open in Protected View, which does not compromise their content
but indicates that some trait is being missed in the randomization.

Types of Weaknesses:

X Overcome Movement

O Predict Movement

0 Limit Movement

(] Disable Movement
Impact on Attackers: Attackers would no longer be able to use most common types of malicious
Microsoft Office documents and would need to modify the payloads or seek other avenues of attack.
Availability: No implementation is publicly available.

Additional Considerations: None

Proposed Research: This technique could benefit from additional research to improve its robust-
ness and study the threat model, but the basic idea is sound and the claims are not overstated.

Funding: Lockheed Martin Corporation, National Science Foundation
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3. DYNAMIC SOFTWARE

3.1 CCFIR: COMPACT CONTROL FLOW INTEGRITY AND RANDOMIZATION
Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Control Injection

Details: This technique [15] prevents an attacker from redirecting code-flow to arbitrary
locations, which is a necessary attacker capability for control-hijacking attacks.

Description:

Details: Compact Control Flow Integrity and Randomization (CCFIR) is a method of pro-
tecting commodity Windows executables. It is based on a set of modules that identify potential
control-transfer targets, perform binary rewriting and randomization, and security policy valida-
tion. It is a user-space technology and does not rely on source code being available in order to
provide protection. Programs are loaded and disassembled in order to identify all indirect and
direct jump/call/return targets. Valid targets are redirected to code stubs in a special area of
memory that is isolated from the regular program code sections. These stubs are aligned in certain
ways to tag them (as function pointer stubs, sensitive return address stubs, and normal user return
stubs.)

Entities Protected: This technology protects commodity user-mode Windows executables
without requiring access to source code.

Deployment: CCFIR needs to be installed on end-user system and run against any exe-
cutable to be protected.

Execution Overhead:
e Benchmarked execution overhead averaging 3.6% with a maximum of 8.6%
Memory Overhead:

e Some additional but minimal physical memory is required for the CCFIR Springboard code
sections storing direct target jump stubs.

Network Overhead:
e None

Hardware Cost:
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e None
Modification Costs:

] Data

O Source Code

O Compiler/Linker
0 Operating System
] Hardware

O Infrastructure

(No modification required.)

Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

[J Seamless
O Simple Configuration
O Complex Configuration (System Admin)

X Expert Operator
Kill-Chain Phases:

[0 Reconnaissance
O Access
X Exploit Development

X Attack Launch
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[ Persistence

Interdependencies: This technique depends on ASLR.

Weaknesses: If CCFIR is incrementally deployed (not protecting the entire system), pointers to
unprotected modules can still be modified by an attacker, allowing a redirection of control flow
and traditional ROP-style attacks. Moreover, CCFIR is also vulnerable to control flow hijacking
because of its coarse granularity [16].

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: If fully deployed, attackers cannot perform Turing-complete return-to-
library attacks. Additionally, unintentional instruction gadgets can no longer be used for ROP,
making attacks significantly more difficult.

Availability: No code is publicly available.
Additional Considerations: None

Proposed Research: Weaknesses arise in control-flow integrity owing to the imprecision of the
analysis that determines which control-flow transfers are valid. This technique is implemented as
a binary-translation tool, which means the control-flow graph must be generated from the binary.
If similar functionality were implemented in the compiler, a more precise control-flow graph could
be used.

Funding: AFOSR, DARPA, National Natural Science Foundation of China, NDRC InfoSec Foun-
dation, ONR
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3.2 SOFTWARE DIVERSITY USING DISTRIBUTED COLORING
Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection

Details: This technique [17] reduces the number of machines an attacker can successfully
compromise in a network using code injection attacks. It does not prevent individual machines
from being compromised.

Description:

Details: This meta-technique involves taking existing code diversity techniques and applying
them across an entire network. The authors attempt to answer the following question: assuming
that an adversary must specially craft an attack for each version of a diverse executable, and we
have access to k versions of an executable, how can we place these versions on a network so as to
minimize the number of compromised machines (conversely, maximize the effort of the attacker)?
Since we are trying to minimize the number of connected machines running the same version, this is
the same as asking for an optimal k-coloring of the graph representing our network. Unfortunately,
finding the minimum number of colors needed for a perfect coloring of a graph (such that no
connected nodes are the same color) is NP-hard, as is the problem of finding an optimal coloring
using k colors. Instead, they propose a distributed heuristic approximation algorithm that results
in at most n/k links between two nodes of the same color, where n is the number of nodes. If
k > n then each node can have its own color (version of the software) and the attacker will require
a new custom attack for each node. If it is lower, then an attacker will only be able to infect a new
node at each step with probability approximately equal to 1/k. This gives us good utility out of
the diverse executables that we do have.

Entities Protected: The overall network is protected from easy compromise by an attacker.

Deployment: The approximation algorithm used for assigning versions is distributed mean-
ing that it must be run on every computer in the network. It could also be deployed from a
centralized server that is distributing software to the network.

Execution Overhead:
e None

Memory Overhead:
e None

Network Overhead:

e None
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Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

O Compiler/Linker
0 Operating System
U Hardware

O Infrastructure

(No modification is required)

Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

O Seamless
[0 Simple Configuration
X Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

[ Reconnaissance
O Access

X Exploit Development
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X Attack Launch

O Persistence

Interdependencies: This technique relies on already having diversified versions of the applications
available. Other diversification techniques must be available for this technique to be useful.

Weaknesses: The proposed idea is more a planning tool than a stand-alone technique. Also even
assuming that diversity can stop large-scale attacks, this method does not stop attacks against one
machine.

Types of Weaknesses:

O Overcome Movement
X Predict Movement
O Limit Movement

X Disable Movement

Impact on Attackers: If the underlying diversity used is sound, then this technique makes it
harder for an attacker to compromise an entire network using only one attack. Depending on the
number of software versions available, he could be limited to a small portion of the network.

Availability: None, results only theoretical

Additional Considerations: This is more a planning method that a stand-alone technique. The
results are highly theoretical.

Proposed Research: The actual impact of diversity on successful attacks must be studied and
analyzed.

Funding: National Science Foundation, Koerner Family Fellowship
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3.3 SECURITY AGILITY FOR DYNAMIC EXECUTION ENVIRONMENTS
Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Exploitation of Trust

Details: This technique [18] aims to mitigate system and network intrusions at a high level
by dynamically modifying security policies.

Description:

Details: The authors describe and implement a software toolkit that allows applications to
be developed around the idea of dynamically changing security policies. The main problem with
moving from static security policies to dynamic policies is that unmodified applications will not be
able to adjust to policy changes that leave them without access to crucial resources. The authors
introduce a framework for designing applications with multiple behaviors that can transition from
one to another depending on which resources (both on the same machine and on the network) are
available under the current security policy. This allows security policies to change on the fly, in
response to an actual or attempted intrusion, while maximizing the utility of the machines and
applications on the network at all times. An agile policy controller that can set and modify the
security policies over the whole network dictates the security policies on each machine.

Entities Protected: Protects the network from potential intrusions and provides a way of
mitigating successful intrusions.

Deployment: Requires deployment on all machines in a network as well as at least one
additional policy controller.

Execution Overhead:

e Varies depending on the application: backup behaviors could be less efficient in order to get
around reduced resources of some security policies

Memory Overhead:

e Varies depending on the application: backup behaviors could be less efficient in order to get
around reduced resources of some security policies

Network Overhead:

e Varies depending on the application: backup behaviors could be less efficient in order to get
around reduced resources of some security policies

Hardware Cost:
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e Requires at least one additional policy controller machine
Modification Costs:

] Data

X Source Code

O Compiler/Linker
X Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

0 Seamless
[J Simple Configuration
X Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

J Reconnaissance
O Access
O Exploit Development

X Attack Launch

O Persistence
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Interdependencies: This technique relies crucially on a detection capability. This can be very
challenging for polymorphic type attacks [19,20]. If the attacks are not detected, they cannot adjust
the policy.

Weaknesses: The policy manager becomes a new point of weakness since it can dynamically
change the security policies of all the other machines on a network. The authors provide a mecha-
nism for distributing the duty amongst several machines so that no single point of trust exists.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

X Disable Movement

Impact on Attackers: This technique makes it more difficult for an attacker to advance an
intrusion due to the network security policies reacting dynamically to his or her attack.

Availability: Research was done as part of a DARPA project so we assume the code is available.

Additional Considerations: This work lacks many specifics. For example, how the policy is
adjusted or what impact policy adjustment has on the system. See [71] for more on dynamic
policy.

Proposed Research: The actual impact of agility and policy adjustment on the security posture
of a system must be studied. Also reliance on a perfect detection capability must be relaxed in
such a system.

Funding: DARPA
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3.4 PROACTIVE OBFUSCATION
Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [21] aims to mitigate buffer overflows and other injection attacks on
network visible services.

Description:

Details: The authors use a similar technique to DieHard but in a more generalized setting.
Since control injection attacks have to be individually tailored to specific executables, this technique
creates multiple copies of each service executable, randomized differently. The randomization used
can be any of the other executable randomization techniques we have described such as ISR, ALSR
or system call randomization. Whenever a request is issued to the service, it is multiplexed to each
of the replicas and the responses are tallied like a vote. If a majority of the replicas agree, then the
response is sent out. The idea is that any attack should only work on one of the replicas and the
others will remain uncorrupted, so a majority vote will result in a correct response. However, it
is more likely that one will be compromised and the others will crash (due to different addresses,
system calls, etc.). This means that if the system returns a response, it will be correct with a
high degree of certainty but it may not answer if a majority of the replicas have crashed. In
order to prevent an attacker from gaining some progressive knowledge and eventually letting him
compromise all the replicas at once, the system proactively reboots replicas with new randomization.
There is a controller that dispatches the requests and tallies votes, as well as controls when replicas
will be rebooted (a configurable time limit).

Entities Protected: Servers
Deployment: Can be deployed on any server with important trusted services.

Execution Overhead:

e Experimental execution overhead of 20% (differs depending on application, this estimate is
very optimistic) and latency overhead of 40%

Memory Overhead:

o Extra memory must be used to store the multiple running replicas so an M times memory
overhead where M is the number of replicas

Network Overhead:

e None
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Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

X Compiler/Linker
X Operating System
U Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

[0 Seamless
X Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[0 Access

X Exploit Development
X Attack Launch
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[ Persistence

Interdependencies: This method does not propose a new randomization technique and relies on
existing diversification techniques.

Weaknesses: The controller that dispatches and maintains replicas is now a new target for attack,
since it is a single point of failure. Additionally, a single compromised replica can destroy it if it is
not also replicated. Also this technique does not protect against information leakage (exfiltration)
that happens on one replica.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

X Disable Movement

Impact on Attackers: The technique on its own does not provide protection. It relies on existing
randomization techniques and voting.

Availability: No publicly available code.

Additional Considerations: The technique on its own does not provide protection. It relies on
existing randomization techniques and voting.

Proposed Research: This technique ensures correct responses by voting amongst the replicas,
but it does not ensure that individual replicas cannot cause damage locally. If multiple replicas were
running on the same machine, the operating system interface (system calls) could be considered as
the other side of a container holding these replicas. Every time a single replica executes a system
call, if the other replicas are uncompromised, they will also issue the same system call. If one of
the replicas is compromised, it must deviate from proper behavior by calling a different series of
system calls that can be detected as aberrant. If it does not deviate, then it cannot do anything
useful. Therefore, the operating system could only execute system calls if a majority of the replicas
request the same system call, ignoring all others.

Funding: Air Force Office of Scientific Research, National Science Foundation, Microsoft Corpo-
ration

44



3.5 PROGRAM DIFFERENTIATION
Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Control Injection and Code Injection
Details: This technique [22] mitigates buffer-overflow attacks on remote services.
Description:

Details: The authors aim to design a secure mobile-phone platform that is not vulnerable
to remote attack through buffer overflow exploits. They note that buffer overflow attacks can be
defended against using several different orthogonal techniques to increase effectiveness. One of
these techniques, system-call randomization, is old and two more are unique to this paper.

The authors propose that, since mobile platforms are rapidly evolving, it may be useful to
consider hardware changes that could defend against buffer overflow attack. Toward this, the first
defense they propose is modifying the return instruction. The vulnerability in the return instruction
is that it returns to an address specified on the stack, which can be targeted by an attacker. Instead,
the new return address will only take an index into a table that contains the actual return addresses.
This table will be readable only by the return instruction and writable only by the call instruction,
so it will not be vulnerable to inspection or tampering. At the start of a function call, the call
instruction will insert the return address into this table with a random unused index. It then puts
this index on the stack. The return instruction loads the actual address from the table based on
the index on the stack and jumps to the specified location. The address table is protected so that
it can only be read by the return instruction and written to by the call instruction.

The second technique the authors propose is to use instruction packing to differentiate at
the instruction set level. The way instruction packing works is it compresses frequently used
instructions together into one instruction with an Instruction Register File (IRF). This IRF stores
the instructions in an indexed table and when the program wishes to use a sequence of these
instructions, it can instead call a 5-argument pack instruction with the indices of the instructions
it wishes to use. For instance, if an often-used sequence of instructions is stored in the table with
indices 1-5, the program would invoke all five instructions at once with a single instruction packd
12 3 4 5. If the indices of the IRF are randomized, then this creates a unique instruction set for
each executable.

Entities Protected: This scheme is targeted at mobile platforms but could be used anywhere
the custom hardware was available.

Deployment: Deployed at the local machine level by modifying hardware.

Execution Overhead:

e Unknown execution overhead due to additional table lookups
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Memory Overhead:
e None
Network Overhead:
e None
Hardware Cost:
e Requires special hardware with the modified instruction set described
Modification Costs:

0 Data

O Source Code

X Compiler/Linker
X Operating System
X Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
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Kill-Chain Phases:

[J Reconnaissance
0 Access
X Exploit Development

X Attack Launch

[ Persistence

Interdependencies: This method should be combined with a ROP defense.

Weaknesses: The method is vulnerable to return-oriented programming without returns since the
jump instruction is not protected.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
0 Limit Movement

0 Disable Movement

Impact on Attackers: Makes it very difficult for an attacker to inject code (since he or she
cannot guess the correct indices into the IRF) and impossible for an attacker to return to arbitrary
locations in the code. ROP is still possible though.

Availability: The hardware specified does not actually exist yet.

Additional Considerations: The technique is effective against traditional code injection, but
the hardware modification proposed makes it impractical for existing systems.

Proposed Research: A complete code injection and ROP protection method is an open problem.

Funding: National Science Foundation
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3.6 PROGRAM PARTITIONING AND CIRCUIT VARIATION
Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [23] aims to prevent exploitation of traditional software vulnerabili-
ties by moving vulnerable code into hardware circuitry.

Description:

Details: The authors describe a system in which a traditional application is partitioned
into two components. A general purpose processor component runs non-vulnerable sections of the
code on traditional computer hardware. Sections of the code that may be vulnerable to traditional
vulnerabilities such as buffer overflows and other address/program counter related exploits can be
translated into logic blocks using hardware description languages and are targeted to run on an
FPGA. A state-transfer interface is used to pass data from the general purpose processor to the
FPGA and vice-versa. Further security can be obtained through dynamic variation of the circuits
running on the FPGA.

Entities Protected: This technology protects applications written in C or other high-level
languages (HLL) that can be translated into hardware description languages (HDL).

Deployment: To deploy this approach, a program must be partitioned and portions of the
source code must be ported either manually or with the help of an HDL-to-HLL translating com-
piler, targeted to a specific FPGA paired with a general-purpose/commodity-computer platform.

Execution Overhead:

e Unknown execution overhead due to data-passing interface between general-purpose processor
and FPGA, potentially lower performance of algorithms implemented on FPGA compared to
general-purpose hardware.

Memory Overhead:

e Negligible overhead for storage of data to be passed between general-purpose processor and
FPGA.

Network Overhead:
e None

Hardware Cost:
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e Additional hardware needed (Xilinx Virtex-5 FPGA referenced in paper ranges from $100—
$1000.)

Modification Costs:

X Data

X Source Code

X Compiler/Linker
[J Operating System
[ Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

[J Seamless
O Simple Configuration
O Complex Configuration (System Admin)

X Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

0 Access

X Exploit Development
X Attack Launch

[ Persistence
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Interdependencies: This technique can benefit from the addition of ASLR and ROP protec-
tion techniques to protect the sections of code that are resident on the general-purpose processor
partition.

Weaknesses: Programs may be improperly or insufficiently partitioned, leaving vulnerable sec-
tions of code running on the general-purpose processor and exploitable by traditional attack
techniques. Attacker may be able to insert vulnerabilities into the FPGA circuit, allowing non-
traditional routes of exploitation.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
X Limit Movement

O Disable Movement

Impact on Attackers: Attackers cannot target addressing-related vulnerabilities in software
components that are running on hardware without the concept of an address space or a program
counter, preventing many traditional avenues of attack. Attackers would need to focus on exploiting
the dynamic hardware itself.

Availability: It is not clear that the technique has actually been implemented.

Additional Considerations: FPGAs are bootstrapped at startup or system reset. This limits the
ability to swap in a new program circuit variant without taking down the entire system. Additional
hardware may present additional attack vectors.

Proposed Research: Investigate the increased vulnerability space presented through new hard-
ware additions such as the integration of Altera FPGA into the commodity Intel Atom product
line.

Funding: National Science Foundation
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3.7 LIBRANDO
Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Control Injection

Details: This technique [24] protects against certain JIT-specific attack vectors including
predictable code generation and JIT spraying, where an attacker injects short sequences of code
into executable memory through constants in High Level Language source code that is JIT compiled
and later utilized in conjunction with other exploits to cause arbitrary code execution.

Description:

Details: This work aims to deter successful attacks against JIT compilers through multiple
dynamic code-diversification techniques. NOP insertion is used to randomize the code that a JIT
compiler emits for a given high-level-language construction. Constant blinding is used to prevent
attackers from being able to emit the equivalent of valid, arbitrary attacker-chosen machine code in-
structions into executable memory by having constants present in the source code encrypted before
they are emitted into the output native executable code and decrypted through a few extra emitted
native code instructions. These methods are implemented as a standalone library, 1ibrando, which
can be used as a black box with unmodified JIT compilers or as utility library within the compiler
source itself.

Entities Protected: Any application that performs JIT compilation/code-generation with
or without source code available.

Deployment: Applications that perform JIT compilation can run unmodified and load
librando through LD_LIBRARY_PRELOAD or they can have their source code modified, recompiled,
and linked with librando.

Execution Overhead:

e Ranging from 1.1x for best-case applications run by a JIT compiler using 1ibrando as a utility
library up through 13x for worst-case applications run by JIT compiler using 1librando as a
blackbox.

Memory Overhead:

e None

Network Overhead:

e None

Hardware Cost:
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e None
Modification Costs:

] Data

X Source Code

X Compiler/Linker
0 Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

0 Seamless
[J Simple Configuration
X Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[0 Access

X Exploit Development
X Attack Launch

O Persistence
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Interdependencies: librando is best used in conjunction with other diversification solutions for
the static code of an application along with techniques such as ASLR or code randomization and
ROP protection.

‘Weaknesses: librando only diversifies code that cannot be protected through the use of ahead-of-
time solutions. Use of librandp alone leaves the static program code unprotected and vulnerable
to exploitation by an attacker.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

X Disable Movement

Impact on Attackers: Attackers will not be able to use JIT-spraying and predictable code
generation to force a JIT compiler to output useful gadgets as part of an exploit attempt, forcing
them to rely much more heavily on vulnerabilities in the static code base of the application.

Availability: No code publicly available.

Additional Considerations: Protections on dynamically generated code are useful but without
protecting of the static code comprising the JIT compiler and the rest of the application containing
the JIT compiler, there are many more possible opportunities for application exploitation.

Proposed Research: Additional randomization techniques could be added to librando in order
to enhance security in certain situation. Memory-map randomization in the absence of ASLR,
increased code-randomization granularity, instruction replacement and instruction recording could
be used to provide more sources of randomization in dynamically generated code.

Funding: Defense Advanced Research Projects Agency, National Science Foundation, Google
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3.8 REDHERRING
Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Data Leakage, Resource, Injection, Privilege/Trust

Details: This technique [25] aims to disrupt attackers by redirecting exploit attempts to
unpatched software decoys that give the appearance of a successful attack and allow monitoring,
while offering the security of a conventional patch.

Description:

Details: The authors present a system whereby a lightweight virtualization mechanism is
used along with a small library for implementing patches to present attackers with a sanitized
decoy environment when they attempt to exploit a patched vulnerability. The decoy environment
is forked from the main application and presents the attacker with the appearance that their attack
has succeeded. This allows the monitoring of the full attack payload while preventing access to
actual sensitive data. Meanwhile, the patch prevents exploitation in the main application and
execution continues as normal for other users.

Entities Protected: Any application with source code available.

Deployment: Application source code/patch modifications are made using the honey-patch
library and the rebuilt application is deployed to the server along with a small set of services
(virtualization controller, checkpoint controller, checkpoint server, reverse proxy).

Execution Overhead:

e Maximum observed 2.6x overhead due to session forking and memory redaction when an
attack triggers a honey-patch.

Memory Overhead:
e None
Network Overhead:

e Minimal additional round-trip latency added to network service requests due to execution
overhead.

Hardware Cost:

e None
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Modification Costs:

O Data

X Source Code

O Compiler/Linker
[J Operating System
0 Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

0 Seamless
O Simple Configuration
X Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[0 Access

U Exploit Development
X Attack Launch

[ Persistence

Interdependencies: Relies on prior knowledge of vulnerabilities in software to be protected so
that patches may be developed.
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Weaknesses: Provides no protection against zero-day/unknown software vulnerabilities in an
application. Attackers with control of decoys can potentially reverse-engineer process image and
discover patches.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
X Limit Movement

X Disable Movement

Impact on Attackers: Makes it difficult for attackers to determine if their attack attempts have
succeeded. Disinformation provided by decoy environments may frustrate further attempts to move
beyond application/machine being attacked.

Availability: No code publicly available.

Additional Considerations: Four additional services have to be run on the system alongside the
patched application, providing a potentially increased attack surface. Further work can be done to
improve security during decoy creation, such as unloading of the honey-patching library.

Proposed Research: None

Funding: ONR, AFOSR, NSF, CASED, EC-SPRIDE Darmstadt, BMBF
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3.9 REVERSE STACK EXECUTION IN A MULTIVARIANT EXECUTION EN-
VIRONMENT

Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection

Details: This technique [26-30] detects buffer overflows on the stack and prevents exploita-
tion of them through stack smashing.

Description:

Details: The authors propose a very simple form of multivariant execution with two replicas
where one replica runs with the stack growing upward and the other runs with the stack growing
down. Normally, any single architecture only supports the stack growing in one direction, but the
authors introduce a compiler transformation that can create a program with an opposite direction
stack. Any buffer overflow attack that works on one would necessarily not work on the other
because the overflow would be writing over different parts of the stack. Therefore, a divergence
in behavior would signify that such an attack has occurred and the operating system could detect
that and terminate the program.

Entities Protected: Any generic machine with this technique deployed in the compiler.
Deployment: Deployed on any machine by modifying the compiler and operating system.

Execution Overhead:

e 100% execution overhead to run a replica

e Experimental results show only a 3% overhead in the replica
Memory Overhead:

e Up to 20% increased executable size

e 100% memory overhead for an additional replica
Network Overhead:

e None
Hardware Cost:

e None
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Modification Costs:

O Data

0 Source Code

X Compiler/Linker
[J Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[0 Access

X Exploit Development
X Attack Launch

[ Persistence

Interdependencies: This method should be combined with ASLR and ROP protection techniques
for better results.
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Weaknesses: A monitor is required to dispatch inputs to both replicas and to detect when their
execution diverges. This monitor is itself vulnerable to attack as it has the same weaknesses as any
other program. Additionally, there are some special cases where a buffer overflow can work on a
stack in both directions equally. Specifically, if a buffer overflow occurs and there is no system call
between it and the return function.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

X Disable Movement

Impact on Attackers: Attackers must find a weakness in the monitor or a more specific type of
buffer overflow.

Availability: No code publicly available.

Additional Considerations: It requires source code of any application to be protected. It also
requires an additional replica to be run (100% execution overhead). Similar, but more limited
multi-variant techniques have been proposed [31].

Proposed Research: An improved technique can use a similar method but without relying on
replicated execution.

Funding: Unknown
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3.10 GENPROG: A GENERIC METHOD FOR AUTOMATIC SOFTWARE RE-
PAIR

Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection and Control Injection

Details: An attacker attempting to exploit known software vulnerabilities prior to the ap-
plication of a patch. This technique [32] automatically generates patches for known bugs in C
programs, limiting the time window for exploitation of such vulnerabilities.

Description:

Details: This work aims to decrease the patch delay by automatically creating patches for
C programs with known bugs. Given source code, along with test cases that demonstrate both the
bug as well as all required behavior of the program, GenProg creates a patched variant. Genetic
programming techniques are used to find a patch that both maintains required functionality and
eliminates the vulnerability. Statements are extracted from existing pieces of the source code and
used for generating potential patched variants of the program. The variants are then tested against
a fitness function that checks that the bug test case no longer succeeds and that the required test
cases do succeed.

Entities Protected: Applications with C source code available.

Deployment: GenProg software needs to be installed on systems. Also requires source code
and test cases for the target applications.

Execution Overhead:
e Negligible, often just a few instructions to implement a check for the exceptional case
Memory Overhead:
e None
Network Overhead:
e None
Hardware Cost:
e None

Modification Costs:
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U Data

X Source Code

O Compiler/Linker
[J Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

[0 Seamless
O Simple Configuration
O Complex Configuration (System Admin)

X Expert Operator
Kill-Chain Phases:

[ Reconnaissance

O Access

X Exploit Development
X Attack Launch

[ Persistence

Interdependencies: This method should be combined with ASLR and ROP protection techniques
that protect against unknown vulnerabilities. It should also be considered within the context of
larger systems that are able to detect vulnerabilities and trigger this technique to generate patches.
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Weaknesses: The generated patch is not guaranteed to block all possible exploits for a given
bug. The generated variant may pass the test case and block the exact exploit payload that it
was provided but a small modification to the exploit could still result in arbitrary code execution.
Additionally, the technique provides no protection against unknown vulnerabilities.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
[ Limit Movement

X Disable Movement

Impact on Attackers: The attack window is decreased as applications gain the ability to repair
themselves without relying upon manual, time-consuming patch procedures.

Availability: Source code is available.

Additional Considerations: The test cases demonstrating the required functionality of the
application must be accurate or patches may be generated that break the functionality of the
program.

Proposed Research: Investigating mechanisms for automatically generating test cases for the
required functionality. Applying this technique to software that lacks source code.

Funding: DARPA Clean-slate Resilient Adaptive Secure Hosts (CRASH) Program
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3.11 DISTRIBUTED APPLICATION TAMPER DETECTION VIA CONTINUOUS
SOFTWARE UPDATES

Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Spoofing, Control Injection, Code Injection

Details: This technique [33] is designed to mitigate Remote Man-at-the-End (R-MATE)
attacks. These are essentially attacks by malicious end-points that participate in a larger distributed
system, such as many clients communicating with a shared server. The attacker, who has full access
to the hardware and software on the end-point, seeks to tamper with the client binary currently
executing without alerting the server to this fact. This technique relies on periodic code mutation
to detect such tampering.

Description:

Details: This technique uses a remote variant of dynamic software diversity to detect code
tampering. On the client-side, only a stub application is initially launched. As the client requires
execution of new functions, the server will compile those functions using diversity transformations
(e.g., obfuscation, randomization) and send them to the client. The server uses control-flow analysis
of the client binary to validate the block being requested is actually a valid control transfer from
the current program state. The server can also push compiled functions to the client in anticipation
of their use. Periodically, the server will regenerate all of the client’s current code fragments in
order to invalidate any blocks that have been tampered with.

Entities Protected: Benign end-points and servers in a distributed system

Deployment: This technique requires diversification agents to be installed on a central
server. It also requires all client code to be re-written in order to support remote retrieval of code
blocks.

Execution Overhead:

e Overhead from diversification was measured to be an average of 10%, and a worst-case of 20%,
on the bzip, gzip, mcf, and crafty binaries. This does not include stalled execution waiting
on blocks to be sent from the server. The authors estimate the additional overhead from
compiling and sending code blocks is approximately 1.5 seconds per function, not counting
network transport latency.

Memory Overhead:

e The authors do not provide any evaluation.

Network Overhead:
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e The authors do not provide any evaluation. This could be substantial for large numbers of
clients, however.

Hardware Cost:
e None
Modification Costs:

U Data

X Source Code

X Compiler/Linker
[J Operating System
] Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

[J Seamless
O Simple Configuration
X Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

O Access

64



X Exploit Development
X Attack Launch

O Persistence

Interdependencies: This technique depends on a remote server to provide diversified code, and
requires a constant connection in order for the protected binary to execute correctly.

Weaknesses: This technique does not provide any analysis of how much difficulty its diversification
scheme actually poses for an attacker. Depending on the mutation rate, attacks may succeed for
a lengthy period of time before being detected, if at all. In addition, it relies on computing a
control-flow graph to detect attacks relying on block requests. These have been shown insufficient
to stop many code reuse attacks [34].

Types of Weaknesses:

X Overcome Movement
O Predict Movement
0 Limit Movement

O Disable Movement

Impact on Attackers: This defense may require an attacker to periodically re-analyze the pro-
gram in order to stressfully tamper with it. It is not clear this provides the attacker with a
substantial disadvantage, however.

Availability: No code publicly available.
Additional Considerations: None

Proposed Research: This defense would benefit from a deeper security evaluation, especially
with respect to what kinds of tampering can and cannot be detected, and how much cost/difficulty
is imposed on the adversary. In addition, research to remove the always-connected requirement
would make this defense much more practical for real-world applications.

Funding: Unknown

65



3.12 THWARTING CACHE SIDE-CHANNEL ATTACKS THROUGH DYNAMIC
SOFTWARE DIVERSITY

Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Data Leakage Attacks

Details: This technique [35], can mitigate side-channel-based data leakage. While the frame-
work is generalizable to other side channels (e.g., power), the authors focus on cache-based side
channels between collocated VMs in a cloud environment. By adding dynamically changing lev-
els of cache noise, the technique disrupts timing side channels based on measuring cache hits and
misses. These attacks leak, to the attacker, what memory addresses are accessed by the victim.
This information can be used to, e.g., derive cryptographic keys.

Description:

Details: This technique uses Dynamic Software Diversity, which adds randomness to pro-
gram control flow in order to make it more difficult for attackers to discern what instructions are
being executed, while retaining the semantics of the original code. It operates by creating, at
compile-time, replicas of code fragments (which may be chosen either probabilistically or targeted
at sensitive functions like encryption/decryption). Each of these replicas is put through a series of
diversifying transformations, which add instructions (whose quantity and location vary per replica)
to create noise on side channels. For example, random memory load instructions are used to disrupt
cache side channels. At run time, whenever the program would execute a diversified code region,
the program randomly chooses one replica to execute.

In order to ensure that attackers cannot simply profile the application to remove the noise,
each of these memory load instructions is itself randomized. An asynchronous thread maintains
a constantly changing table of memory addresses. Each randomized load instruction loads the
memory address in one entry in this table. Thus, every time the cache noise is added, it is added
to a different, randomly chosen cache line.

Entities Protected: This technology protects user-mode applications
Deployment: This technique requires protected applications to be recompiled

Execution Overhead:

e When 25% of the code base is dynamically diversified, there is an average 86% and worst-case
700% overhead on the SPEC 2006 CPU benchmark

Memory Overhead:

e The authors do not provide an analysis. At minimum, the overhead will be a function of both
the number of replicas made and the number of functions diversified.
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Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

0 Data

O Source Code

X Compiler/Linker
0 Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
Kill-Chain Phases:

0 Reconnaissance

O Access
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X Exploit Development
X Attack Launch

O Persistence

Interdependencies: None

Weaknesses: The authors tested their defense against PRIME+PROBE and EVICT4+TIME side
channel attacks, and found that it could reduce the number of leaked bits of a 128-bit key from
approximately 100 to 16. However, this comes at a potentially substantial performance penalty,
as discussed above. In addition, it may be possible to develop smarter cache side channel attacks
that are aware of this defense. The noise added may also be removed, for example, as there is no
cryptographic guarantee on the level of randomness added to the side channel.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
0 Limit Movement

O Disable Movement

Impact on Attackers: This technique could hinder attackers trying to exploit cache-based side
channels to leak sensitive data. The attacker would have to rely on other, more indirect, side
channels such as branch prediction caches or disk access times.

Availability: No code publicly available.
Additional Considerations: None

Proposed Research: The technique is useful, but imposes potentially severe execution overhead.
Research on optimized diversification to reduce this penalty, while maintaining security, would be
valuable. Additionally, extending this approach to other side channels (e.g., power) would increase
its coverage.

Funding: Defense Advanced Research Projects Agency
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3.13 MVARMOR
Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection, Control Injection, Data Leakage

Details: MvArmor [36] mitigates control- and code-injection attacks. The threat model
considers an attacker that can interact repeatedly with the target program, and is able to read and
write to arbitrary addresses in memory. They have access to both relative and absolute memory
operation primitives, and can use both spatial and temporal vulnerabilities. The authors consider
both attackers attempting to gain arbitrary code execution, as well as attackers trying to leak
sensitive data in memory.

Description:

Details: MvArmor relies on multi-variant execution, in which multiple diversified variants
of the same program are run simultaneously. Any input to one is copied to all other variants. Their
state is compared and synchronized on sensitive system calls (e.g., I/O and memory manipulation
calls). Between these events they execute independently. At synchronization time, a security
monitor compares the arguments, system call, and return value across all variants in order to
detect attacks.

In order to protect against memory errors, MvArmor generates variants with three properties,
all related to memory layout. To deterministically stop absolute spatial attacks, non-overlapping
address spaces are used. Every variant has an address space unique to it, so that any memory
address stored in a pointer cannot ever point to mapped memory in another variant. Thus, cor-
rupting that pointer would cause errors in all other variants. To deterministically stop relative
spatial attacks (e.g., buffer over-reads) non-overlapping offset spaces are used. This ensures that
the relative distances between any two objects is unique to a variant, and attempting to use, e.g., a
partial pointer overwrite will fail in all other variants. Finally, to protect against temporal attacks
(e.g., use-after-free exploits), MvArmor uses a combination of randomized allocators and approx-
imate type-safe address reuse. This probabilistically stops temporal exploits. The authors note
that deterministically preventing such exploits requires recompilation, which they do not assume
is available.

Entities Protected: User-space applications converted using MvArmor

Deployment: MvArmor requires a binary to protect, but no source code. It also relies on
hardware-assisted virtualization, such as Intel VT-x. The implemented version requires Dune [37],
which is Linux-specific and used to implement process virtualization.

Execution Overhead:

e MvArmor was evaluated on the SPEC 2006 CINT benchmark. It has an average overhead of
9.1% for two variants, and 20.4% for four variants.
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Memory Overhead:

e The authors do not evaluate memory overhead. At minimum, it will be the product of the
code size and the number of variants

Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

0O Data

O Source Code

O Compiler/Linker
X Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
J Simple Configuration
O Complex Configuration (System Admin)

[J Expert Operator
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Kill-Chain Phases:

[J Reconnaissance
0 Access
X Exploit Development

X Attack Launch

[ Persistence

Interdependencies: This technique depends on ASLR being present in order to implement variant
generation.

Weaknesses: MvArmor focuses many of its protections on the heap. Attacks using other regions
of memory (e.g., the Global Offset Table) may be able to bypass protection from temporal and
relative spatial attacks. In addition, attacks not relying on the set of sensitive system calls will not
be detected.

Types of Weaknesses:

X Overcome Movement
0 Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: MvArmor imposes significant difficulty on attackers trying to leverage
memory errors in order to leak data or achieve code execution.

Availability: No code publicly available.
Additional Considerations: None

Proposed Research: Further evaluation of attacks using regions of memory outside the stack
and heap (e.g., Global Offset Table) is needed to determine the security guarantees of this system.

Funding: European Commission, Netherlands Organization for Scientific Research
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4. DYNAMIC RUNTIME ENVIRONMENT

4.1 ADDRESS SPACE RANDOMIZATION
4.1.1 ADDRESS SPACE LAYOUT PERMUTATION
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:
Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [38] defends against buffer overflow attacks on the stack and heap
from an adversary that can provide arbitrary input to a vulnerable program. A buffer-overflow
attack occurs when an attacker can provide malformed input to a program that causes it to write
the input incorrectly to areas outside the allotted memory location. This technique defends against
direct overflow attacks, where the goal is to overwrite the return pointer on the stack, and indirect
attacks where the goal is to overwrite a function pointer on the heap that is later dereferenced. It
does not protect against adversaries that have local access to a machine.

Description:

Details: This technique performs stack randomization at both the user and kernel levels.
User-level permutation includes both a coarse randomization (code and data segments are randomly
placed) and a fine-grained randomization (functions and variables are randomized inside code and
data segments). The user-level permutation is implemented as a binary rewriting tool that processes
Executable and Linkable Format (ELF) executables and outputs a randomized version with the
same behavior. This rewriting does not require source code access or recompilation. At the kernel
level, the starting location of the user stack is randomly chosen and the heap is removed from its
usual place inside the data section and randomly placed in program memory. Additionally, the
mmap () function is patched so that individual pages inside the heap are randomly allocated.

Entities Protected: All programs running on the machine are protected from code or
control injection through individual, independent program randomization.

Deployment: This technique could be deployed on any generic machine.

Execution Overhead:

e The required kernel changes do not affect performance to a significant degree and user-level
changes occur as a preprocessing step and so do not affect execution speed.

Memory Overhead:

e Experimental results show an approximately 20% increase in executable size and memory
footprint.
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Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

0 Data

O Source Code

X Compiler/Linker
X Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
Kill-Chain Phases:

0 Reconnaissance

O Access
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X Exploit Development
X Attack Launch

O Persistence

Interdependencies: Memory randomization is more effective when it is combined with various
types of memory guards [39,40].

Weaknesses: As with many other address randomization techniques, the entropy of this scheme
is limited [41,42] by the architecture machine width (i.e., number of bits: 32 or 64). In this case,
they do get very close to that limit with 29 bits of entropy for the heap location, 28 bits for the
stack location, 20 bits in mmap () and 20 bits within the data and code segments. This far exceeds
other related schemes. However, their scheme is not resistant to attacks that can violate “memory
secrecy” [43] through leakage or local access. It cannot randomize inside of stack frames so it is
also vulnerable to return-oriented programming (ROP) attacks. It may also be vulnerable to a
heap spraying technique [44] where large chunks of memory are allocated quickly to try to reduce
uncertainty on the heap.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
X Limit Movement

O Disable Movement

Impact on Attackers: Attacker level of effort is raised substantially. Although it may be possible
to mount attacks using address leakage, it would require additional effort that is much higher than
finding and exploiting the original buffer overflow.

Availability: Source code from the original researchers is available, which runs on Linux with
ELF executables. Additionally, derivatives implementations from this original work are available
in every major modern operating system, including Windows, Linux, OS X, iOS, and Android,
among others.

For legacy Windows applications that were not built with the relocation information neces-
sary to support address space layout randomization, recent research has demonstrated how that
information can be dynamically reconstructed thereby allowing the address space to be random-
ized [45].

Additional Considerations: When applying this technique, it is important to ensure that each
process is randomized differently. In earlier version of Android, this technique was applied, but due
to the process by which applications were forked from a single zygote process, the libraries, while
randomly placed, were placed uniformly in the address space of every application [46]. This allowed
an attacker to glean the location of code in one application, and exploit it in another. To remedy
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this problem, a pool of zygote processes, called a morula, can be maintained, thereby allowing a
process with a different memory layout to be spawned quickly [46].

Proposed Research: Developing a memory-protection technique that does not assume memory
secrecy and provide high entropy is an important missing piece.

Funding: Unknown
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4.1.2 DIEHARD
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:
Attack Techniques Mitigated: Code and Control Injection

Details: DieHard [47,48] protects the heap from indirect buffer overflow attacks where an
attacker attempts to overwrite a function pointer to cause control injection.

Description:

Details: DieHard attempts to defend against four classes of vulnerabilities that could lead
to program crash or code/control injection: invalid frees, buffer overflows, dangling pointers and
uninitialized reads.

The strategy used has three main elements: address randomization, heap spacing, and repli-
cation. Addresses of heap objects are randomized using a different seed each time the program
is executed. Additionally, the heap is sized to be M times larger than is necessary for program
execution. This allows for extra space between objects so it is less likely that a buffer overflow will
result in overwriting of another object. DieHard also maintains N copies of the heap initialized
with different random seeds. Whenever a memory operation is done, a “vote” occurs between the
copies. These three techniques together provide a probabilistic measure of defense against the four
classes of vulnerabilities. Since there are multiple copies with different randomized addresses, any
targeted buffer overflow would end up segmenting the control flow (i.e., replicas would end up
executing different segments of code). This would be discovered and a recovery mechanism could
possibly be used [49-51].

Entities Protected: Can be configured to protect any or all programs on a machine.

Deployment: This technique could be deployed on any generic machine by patching the
operating system.

Execution Overhead:
e Experimental results show an execution overhead of 50-100% with M = 2 and 3 replicas.
Memory Overhead:

e Because of the increased heap size and replicas, the memory overhead is quite large, at least
M % N.

Network Overhead:

e None
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Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

O Compiler/Linker
X Operating System
U Hardware

O Infrastructure
Expertise Required to Implement:

X Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

[0 Seamless
X Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[0 Access

X Exploit Development
X Attack Launch
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[ Persistence

Interdependencies: DieHard and ASLR can interfere with each other and potentially have neg-
ative impact. DieHard consumes a large amount of memory, which makes the ASLR less effective.

Weaknesses: Provides only probabilistic security; depending on the parameters chosen, a system
might be vulnerable to a brute-force attack. It also assumes “memory secrecy.”

Types of Weaknesses:

X Overcome Movement
X Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: Makes it difficult to mount injection attacks against the heap and even
more difficult to ensure that a given attack will work 100% of the time.

Availability: The code is available online for non-commercial use. A demonstration that is con-
figured to provide heap randomization to Mozilla Firefox in Windows is also available.

Additional Considerations: In the process of stopping buffer overflow attacks, this technique
also allows programs to recover from many common errors without crashing (See [52] for failure-
oblivious computing). Most other memory-randomization techniques will prevent an attacker from
gaining control, but will still cause the program to crash upon attempted exploitation of a buffer
overflow.

Proposed Research: A low-overhead memory protection technique that does not assume memory
secrecy is still an open research problem. The memory overhead of DieHard is really significant.

Funding: National Science Foundation, Intel Corporation, Microsoft Research
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4.1.3 INSTRUCTION-LEVEL MEMORY RANDOMIZATION
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [53] defends against buffer-overflow attacks on the stack and heap
from an adversary that can provide arbitrary input to a vulnerable program. A buffer overflow
attack occurs when an attacker can provide malformed input to a program that incorrectly causes
it to write the input to areas outside the allotted memory location. This technique defends against
direct overflow attacks, where the goal is to overwrite the return pointer on the stack, and indirect
attacks where the goal is to overwrite a function pointer on the heap that is later dereferenced. It
does not protect against adversaries that have local access to a machine.

Description:

Details: This technique randomizes both the stack and heap. The randomization takes
the form of a program that transforms an executable into a randomized version that has the same
behavior. Random padding is added at the start of the stack and before the return address in every
stack frame by modifying the assembly code that creates these stack frames. The placement of heap
chunks is also randomized by requesting a chunk much larger than is needed and then placing the
original chunk randomly inside that larger chunk. The main advantage of this technique is that
it does not need access to source code or recompilation of target programs. It matches with the
current software distribution model in that it could be hooked into an installer application that
would randomize the executable differently for every machine where it is deployed.

Entities Protected: Any or all programs running on a machine that have been processed
by the binary rewriter.

Deployment: Can be deployed to any generic machine as part of a platform configuration
or individual programs can be manually randomized. This method is a separate application and
does not require modification to any other component.

Execution Overhead:

e None
Memory Overhead:

e Stack and heap size increased by approximately 20%.
Network Overhead:

e None
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Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

O Compiler/Linker
0 Operating System
U Hardware

O Infrastructure

(No modification required)

Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

O Seamless
X Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

[ Reconnaissance
O Access

X Exploit Development
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X Attack Launch

O Persistence

Interdependencies: This technique can be complimentary to ASLR, but it can have a conflict
with DieHard. Applying both DieHard and this technique can make the memory overhead very
large.

Weaknesses: This scheme only partially protects against ROP. It makes it more difficult to put
arguments onto the stack that will be passed to the target library function, but does not fully
prevent redirection of program control. The randomness injected is also limited by the machine
architecture, namely it cannot be more than 32 bits (and it probably much lower than that in
practice). They also cannot rewrite some instructions, so in their experimental results, they only
protected about 70% of each executable. This technique is not effective against attacks that violate
memory secrecy and may be vulnerable to heap spraying.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: Increases the level of effort for attackers in many circumstances. Since
some instruction sequences cannot be processed by this technique, portions of executables may
remain vulnerable.

Availability: No code publicly available.

Additional Considerations: This approach is notably different from many other memory ran-
domization techniques in that it is done as a binary rewriting. This means that it could actually
be installed on a software distribution server that would uniquely randomize executables as they
were being distributed (and thus require no configuration or changes of any kind on the client).

Proposed Research: A low-overhead memory-protection technique that does not assume memory
secrecy is still an open research problem.

Funding: National Science Foundation
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4.1.4 OPERATING SYSTEM FINE-GRAINED ADDRESS SPACE RANDOM-
IZATION

Defense Category: Dynamic Runtime Environments
Defense Subcategory: Address Space Randomization
Threat Model:
Attack Techniques Mitigated: Code Injection, Control Injection, and Data Leakage

Details: This techniques [54] defends against control-flow hijacking attacks in the kernel.
These attacks are made possible by leverage kernel vulnerabilities such as buffer-overflows, or use-
after-free vulnerabilities. Furthermore, this technique defends against kernel rootkits, which inject
and execute kernel-level code. This technique also defends against data leakage attacks. This is
significant as information leaked by the kernel about the layout of kernel memory could be used to
mount a control injection attack.

Description:

Details: This technique randomizes both the code and the data within the operating sys-
tem, and supports re-randomization during runtime. This re-randomization is supported through
an LLVM link-time transformation that embeds relocation and type information into the final
process binary. This allows for several distinct classes of runtime re-randomization. The code is
re-randomized by shuffling the symbol table. To add entropy to the code re-randomization, dummy
padding functions can be added to the symbol table (this negligibly affects the memory footprint
of the task due to demand paging). Entropy is added to the function layout by adding a dummy
basic block to the beginning of each function, a technique the authors call basic-block shifting.
Static data objects are also re-randomized at runtime. Similar code re-randomization techniques
are also applied here, in particular randomizing the static and read-only data in the symbol table.
The layout of structs can also be re-randomized, with some limitations (e.g., unions). The runtime
stack is also re-randomized to change the base address, as well as the relative offset of objects on
the stack by adding a stack-padding strategy. By adding a wrapper to malloc/mmap-like calls,
random padding can be added around dynamically allocated objects, and these objects can also be
permuted. Finally, loadable kernel modules can also be re-randomized. However, to support this
functionality, dynamic linking within the operating system is forbidden.

Entities Protected: The operating system in which this technique is applied.

Deployment: This technique could theoretically be applied in any operating system. How-
ever, operating system fine-grained randomization is much easier to implement and more efficient
in a microkernel-based operating system. Randomizing a monolithic kernel such as Linux would
require significantly more effort.

Execution Overhead:

e The authors report experimental results that show approximately 1% overhead on average
for the SPEC CPU 2006 benchmarks (which were ported to their prototype system).
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e The worst-case overhead occurred for the perlbench program, which exhibited a 36% overhead.
This is attributed to the high number of dynamic memory allocations.

e The runtime overhead of the system is a function of the randomization frequency. If random-
ization is applied every 1s, the overhead is over 40%.

Memory Overhead:

e The authors report experimental results that show approximately 15% increase in the size of
the memory state.

Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

] Data

O Source Code

O Compiler/Linker
X Operating System
[0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

O Seamless
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O Simple Configuration
O Complex Configuration (System Admin)

X Expert Operator
Kill-Chain Phases:

X Reconnaissance

O Access

X Exploit Development
X Attack Launch

[ Persistence

Interdependencies: As mentioned previously, to support rerandomizing loadable kernel modules,
dynamic linking is disallowed in the kernel.

Weaknesses: This technique has a few weaknesses. First, this technique is realistically only
tenable in a microkernel. This limits its applicability, as in practice, major operating systems like
Linux have monolithic kernels, and these techniques would be difficult if not impossible to apply
to a monolithic kernel.

The overhead of re-randomization is strongly tied to the re-randomization frequency, and
thus in order for the overhead to be tenable, the randomization interval must be several seconds
or more. Such a long re-randomization interval may be long enough for an advanced attacker to
launch an attack.

Types of Weaknesses:

X Overcome Movement

O Predict Movement

0 Limit Movement

] Disable Movement
Impact on Attackers: This technique significantly increases the effort of an attacker to compro-
mise the kernel and carry out a code- or control-flow hijacking attack. The attacker would need to

compromise the system within a short time interval before re-randomization is applied. This may
limit the complexity or effectiveness of the attacks that could be carried out.

Availability: No code publicly available.
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Additional Considerations: The current prototype is implemented in the MINIX 3 microkernel,
and not easily portable to other operating systems.

Proposed Research: The authors note that the link-time modifications they make to enable
re-randomization at runtime could be applied in other domains, such as in userspace applications.

Funding: European Research Council
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4.1.5 FUNCTION-POINTER ENCRYPTION
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: This technique [55] defends against control injection through indirect buffer-overflow
attacks on the heap by encrypting all function pointers so they cannot be modified.

Description:

Details: This technique aims to prevent indirect buffer-overflow attacks by making it dif-
ficult for the attacker to overwrite a function pointer with a chosen value. The GNU Compiler
Collection (GCC) is patched so that at link/load time all function pointers *fp are replaced by
*fp XOR address(fp) XOR rand where rand is a 32-bit random number, chosen at the start of
execution. Using rand provides a high degree of unpredictability if the attacker does not know it,
and it is chosen independently at the start of every execution so it should be difficult to guess.
Incorporating address (fp) makes two different pointers to the same function have different keys.
Additionally, this makes it so that the attacker cannot learn an encrypted value for one pointer
and substitute it for another, changing the location of the original pointer. The “key” is effectively
address (fp) XOR rand and is used symmetrically to decrypt the respective function pointer when
it is dereferenced. If an attacker manages to find a buffer overflow vulnerability and exploit it to
overwrite a function pointer, he or she will not be able to forge an encrypted address that will point
to his or her chosen location when it is decrypted (since the attacker does not know rand).

Entities Protected: All programs running on a machine utilizing this technique.

Deployment: This technique could be applied to any generic machine by modifying the
compiler and operating system.

Execution Overhead:
e The authors show an experimental slowdown of approximately 4%.
Memory Overhead:

e The size of the executable in memory is increased by addition of the encryption/decryption
keys. The paper does not measure this effect but it is likely small (each function pointer
approximately doubles in size)

Network Overhead:

e None

Hardware Cost:
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e None
Modification Costs:

] Data

O Source Code

X Compiler/Linker
X Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
[J Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[0 Access

X Exploit Development
X Attack Launch

O Persistence
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Interdependencies: None

Weaknesses: This technique is vulnerable to an attacker that has a copy of the program and can
learn the encrypted value of a function pointer at runtime (through violation of memory secrecy).
The function pointer is masked by its own address, which can be determined by an attacker running
a copy of the program, and a random key, which can be deduced if the encrypted function pointer is
known along with the unencrypted function pointer and its address (since the encryption function
is just XOR). This effectively recovers the secret encryption key and would allow an attacker to
forge a pointer to any chosen location that would work for any function pointer in the program (not
just the one that the attacker originally learned). Techniques exist that would allow an attacker to
exploit a vulnerable program to obtain one or more encrypted function pointers.

The above threat can be partially mitigated by using a cryptographic hash function instead
of XOR when combining rand and address(fp). This would still allow an attacker to forge the
specific function pointer that was leaked to him, but it would not make other unrelated function
pointers vulnerable (since the hash cannot be reversed and rand is not learned). Load time would
be significantly slower while the linker computes hashes for each function pointer, but runtime
would be the same because encryption and decryption would still be XOR (just the calculation of
the individual keys changes). Full mitigation of this threat requires use of an encryption function
that is secure against a known plaintext/ciphertext attack.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
O Limit Movement

0 Disable Movement

Impact on Attackers: Makes it difficult for an attacker to redirect program control to a chosen
address unless he or she can both obtain a copy of the program executable and violate memory
secrecy to obtain encrypted addresses.

Availability: This technique is used in several Linux distributions that we know about. Fedora
Core encrypts function pointers in libc but not in other programs or libraries. Red Hat Enterprise
has a reference to encrypting function pointers in one of its whitepapers but it is unclear what the
scope of it is in their implementation.

Additional Considerations: This technique is also like ASLR. It has no significant downside, so
if it is available, it is advisable to use it even if it has weaknesses.

Proposed Research: In the original paper, XOR was chosen as an encryption function because it
is very fast and causes little overhead in the program execution. Using a secure encryption function
at the time was not possible. Since publication, Intel has added a hardware instruction set for AES
that can encrypt/decrypt in a small number of cycles. We propose that this scheme be implemented
with XOR replaced by AES encryption/decryption done in hardware in order to evaluate the effect
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on performance. Such a scheme would be secure against an attacker with any knowledge of the
program except the encryption key. The question of where to store the encryption key is still
open, but it should be possible to store it such that it would require an additional exploit in the
kernel to bypass. It may also be possible to extend this technique to direct buffer overflow attacks
(overwriting stack return addresses) but the implementation would be considerably different.

Barring AES encryption, this technique could also be made more robust by combining it
with some kind of memory randomization. The most straightforward method would be to choose
one that is implemented as a binary rewriter; from the point of view of the loader which does
the encryption it would be no different but the executable on each machine would be randomized
differently, making it much more difficult for an attacker (see above attack requirements).

Funding: National Science Foundation, Air Force Research Laboratory
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4.1.6 CODE SHREDDING
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: This technique [56] defends against exploits based on memory-corruption vulnera-
bilities in which the attacker is able to overwrite all or part of a code pointer to an arbitrary value.
The attacker is also assumed to be able to disclose a valid memory address within the program
code. This technique works in conjunction with Data Execution Prevention (DEP), which prevents
the attacker from modifying code.

Description:

Details: This technique effectively randomizes the address space of the code region at the
byte level. Code addresses are self validating by encoding a checksum of the address in some
high-order bits. A technique called code mirroring is used to replicate the binary for each unique
checksum value. Each replica of the binary is referred to as a segment. At each control-flow transfer
instruction, the target address is validated by checking the checksum value in the high-order bits
of the address, and thereby validating the address is in the correct segment.

Entities Protected: All programs running on a machine utilizing this technique.

Deployment: This technique can be deployed on any generic machine by developing a
process-level virtual machine monitor (VMM) that supports dynamic binary instrumentation to
support the validation of addresses. This technique could also be realized at the OS or hardware
level.

Execution Overhead:
e The authors show experimentally a slowdown factor of 3.65x to 26.1x.
Memory Overhead:

e Code mirroring increases the size in virtual memory by a factor of 2¢ where ¢ is the number
of bits in the checksum.

e Code mirroring can be realized by mapping one physical page into multiple virtual addresses.
Consequently, the physical memory overhead is significantly less than the virtual memory
overhead.

Network Overhead:

e None
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Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

X Compiler/Linker
0 Operating System
U Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[0 Access

X Exploit Development
O Attack Launch
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[ Persistence

Interdependencies: Code shredding is a form of ASLR, and therefore has similar interdependen-
cies.

Weaknesses: This technique introduces a significant amount of overhead into the system, which
renders it impractical for many systems. The technique as implemented by the authors also is sub-
ject to several other limitation. The technique cannot be applied to dynamically loaded libraries,
which often contain a significant portion of the executed instructions in an application. The tech-
nique is not applied to the Code Shredding module itself that implements the proposed technique.
Therefore, the Code Shredding module itself is a valid target for a control-flow hijacking attack.
This technique also does not apply to dynamically generated code, such as JIT code. Therefore, it
is also vulnerable to JIT spraying attacks. Finally, the existing implementation cannot be applied
to all binaries—some result in crashes for unknown reasons.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: Increases the level of effort for attackers in many circumstances. Since
some instruction sequences cannot be processed by this technique, portions of executables may
remain vulnerable.

Availability: No code publicly available.

Additional Considerations: The significant overhead introduced by Code Shredding as well as
the weaknesses discussed render it impractical for operational deployment.

Proposed Research: Implementing similar functionality in the OS or hardware so the Code
Shredding module itself cannot be the target of a control-flow hijacking attack.

Funding: Unknown
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4.1.7 BINARY STIRRING
Defense Category: Dynamic Runtime Environments
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: This technique [57] defends against control-flow hijacking attacks through gadgets,
or short instruction sequences, that are contained within the main application binary itself, instead
of libraries. To carry out such an attack, an attacker would need to exploit a memory-corruption
vulnerability to redirect control flow. Without this technique, the addresses of gadgets within the
application binary are static, and can therefore be easily discovered by an attacker on a remote
machine with a copy of the binary.

Description:

Details: The goal of this technique is to randomize the address space of the main application
binary for each individual invocation of the application. This is accomplished via two steps. First,
a binary-rewriting tool is used to analyze and rewrite an application binary to add a load-time
self-transforming instruction relocation (STIR) phase. Second, the runtime phase randomizes the
address space based on metadata from the analysis conducted in the binary-rewriting tool that
identified contiguous blocks of code.

Entities Protected: Any binary can be written using this technique’s binary-rewriting tool.
Any application processed with this tool is protected by this technique.

Deployment: This technique can be applied to applications on any generic machine by
processing their binaries with this tool. Application distributors can process applications before
distributing them to others so that end users are seamlessly protected.

Execution Overhead:
e The authors show experimentally an average slowdown of 1.6%
Memory Overhead:

e The authors show experimentally that the file size and code-section size of each binary in-
creases on average by 73% and 3%, respectively.

e The authors show experimentally an average increase in the process memory size of 37%.
Network Overhead:
e None

Hardware Cost:
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e None
Modification Costs:

] Data

O Source Code

X Compiler/Linker
0 Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

X Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
[J Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

X Reconnaissance

[0 Access

X Exploit Development
X Attack Launch

O Persistence
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Interdependencies: This technique randomizes the application binary. For increased protection,
it can be used in tandem with other ASLR techniques that randomize the library locations.

Weaknesses: The main weakness of this defense is that all code addresses are static after initial-
ization. Therefore, it is vulnerable in the presence of a memory-disclosure vulnerability that could
leak code addresses after the initial randomization. At attacker can use such information to launch
a tailored control-hijacking attack. This attack technique was later formalized as JIT-ROP [58].

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: This technique increases the level of effort for attackers by forcing the
attacker to do reconnaissance for every program invocation to identify the locations of any gadgets
they wish to leverage in a control-flow hijacking attack.

Availability: No code publicly available. A commercial product from Polyverse [59] appears to
leverage a similar technique.

Additional Considerations: For this technique to be maximally effective, it must be applied to
every application running on a machine. However, it may be possible, in environments like Linux,
to apply such randomization to all package in a centralized package manager. This has the benefit
that end users do not need to process all of their applications to get the desired protection.

Proposed Research: Only code available at load time is randomized. Notably, just-in-time-
compiled code is not affected by this technique. The authors also propose considering the possibility
of rerandomizing the address space periodically during execution to provide stronger security.

Funding: Air Force Office of Scientific Research, National Science Foundation, Defense Advanced
Research Projects Agency
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4.1.8 INSTRUCTION LAYOUT RANDOMIZATION
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [60], Instruction Layout Randomization (ILR), defends against code-
reuse attacks that hijack and redirect control flow through gadgets in the code. In such attacks,
the attacker must know where to redirect control flow to achieve the desired effects. The attacker
does not have direct access to the system or protected program, but is assumed to have access to
a copy of the executable for offline analysis.

Description:

Details: More coarse-grained address-space randomization techniques are vulnerable if code
addresses are disclosed and the attacker can then infer the location of other useful code or gadgets.
This technique applies fine-grained address-space randomization at the granularity of a single in-
struction in order to make identifying and redirecting control flow through specific gadgets more
difficult. ILR includes two key components, the first of which is an offline analysis that is used to
randomize the instructions and include relevant metadata used at runtime. The second key com-
ponent of ILR is a process-level virtual machine (PVM) that fetches the randomized instructions
and executes them in the correct order.

Entities Protected: Every process that has been processed by ILR and run with the asso-
ciated PVM.

Deployment: This technique could be applied to any generic machine by modifying the
compiler.

Execution Overhead:

e Experimental results show an average execution-time increase of approximately 15%. In some
cases, the execution overhead can be much higher, nearly 2x.

e The PVM on which ILR is built incurs an overhead of approximately 8%.
Memory Overhead:

e On-disk memory increase as high as 264 MB.
e In-memory overhead as high as 345 MB.

e Authors note that their prototype has not been optimized for memory usage and conjecture
the memory use could be substantially reduced.

Network Overhead:
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e None
Hardware Cost:

e None
Modification Costs:

O Data

0 Source Code

X Compiler/Linker
[J Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
0 Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

0 Reconnaissance
O Access

X Exploit Development
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X Attack Launch

O Persistence

Interdependencies: ILR is built upon a PVM, similar to some other techniques, such as described
in Section 4.2.2. To combine such techniques, the PVM would have to be extended to support both
feature sets concurrently, assuming they are not mutually exclusive.

Weaknesses: After the instructions are randomized, their addresses may still be vulnerable to
memory-disclosure vulnerabilities. If an attacker can identify the address of a function or gadget,
they may still be able leverage the code in a control-flow hijacking attack. Additionally, the PVM
is not itself randomized as the rest of the application is. Therefore, the PVM itself is a potential
vulnerability.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
[0 Limit Movement

0 Disable Movement

Impact on Attackers: ILR significantly increases the level of effort for attackers by randomizing
the location of every instruction in the program. The attacker therefore cannot leverage the context
of nearby code to infer the control flow to subsequent instructions that could be leveraged in a
control-flow hijacking attack.

Availability: No code publicly available.

Additional Considerations: ILR does not randomize the location of shared libraries. Libraries
are commonly the target of control-flow hijacking attacks. Also, there are some corner cases and
compiler optimizations that ILR cannot handle.

In more recent work [61], Kim et al. considered ILR hardware acceleration. They proposed
integrating ILR into the processing pipeline, and maintaining two program counters: one for the
randomized instructions and one for unrandomized instructions. In this way, the unrandomized
addresses can be used to allow better cache utilization, while randomized addresses are used to
provide better security. Their simulation results suggest a minimal increase in the power consump-
tion of a processor implemented with this functionality (<1%), but 1.63x better performance, as
compared to a more naive ILR software-based implementation.

Proposed Research: The authors propose optimizing their implementation to improve the mem-
ory overhead.

Funding: National Science Foundation, Army Research Office, Air Force Research Laboratory,
and Air Force Office of Scientific Research
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4.1.9 IN-PLACE CODE RANDOMIZATION
Defense Category: Dynamic Runtime Environments
Defense Subcategory: Address Space Randomization
Threat Model:
Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [62] defends against code reuse and ROP attacks. To carry out such
attacks, an attacker must know the addresses to which to divert control flow. The attacker can
provide input to the vulnerable software, either directly over the network, or through a file or other
program input. For example, the authors consider malicious PDF inputs to Adobe Reader. This
technique defends against ROP attacks through gadgets, or short sequences of a few instructions,
instead of whole functions.

Description:

Details: The technique is an amalgamation of several binary-modification techniques that
modify the instructions in the program but not the logical functionality of the program. By
replacing instructions or instruction sequences with different but logically equivalent instructions,
the gadgets in the program are either removed, or replaced by a different gadget, which may
have different, unexpected behavior when used in a ROP attack. In carrying out these binary-
modification techniques, the length of the code is unchanged such that all existing branch-target
addresses are unchanged. One such binary-modification technique is to substitute instructions one
for one, where the instructions have the same functionality and length (x86 instructions in general
are variable length). For example, addition can be replaced with negative subtraction. The next
binary-modification technique is instruction reordering. When a compiler generates a binary, it
orders instruction in such a way to optimize for the execution time of the application based on the
microarchitecture of the processor. There are many logically equivalent ways to order instructions,
and by reordering instructions gadgets can be altered, moved, or eliminated. Another binary-
modification technique is to modify the registers that are used. There are several general-purpose
registers, and so by permuting which registers hold what data, the set of gadgets in the application
are modified, making it more difficult to launch a deterministic ROP attack. These techniques can
all be applied without the source code or any debugging symbols.

Entities Protected: Any applications that have been processed by these binary-modification
techniques.

Deployment: This technique could be applied to any generic machine by processing any
applications to be protected with a similar tool.

Execution Overhead:

e Negligible execution-time overhead. The number of instructions executed is the same, but
the instruction order may be slightly slower given the processor pipeline.

Memory Overhead:
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e None
Network Overhead:

e None
Hardware Cost:

e None
Modification Costs:

O Data

O Source Code

O Compiler/Linker
0 Operating System
0 Hardware

O Infrastructure

(No modification required)

Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
0 Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator

Kill-Chain Phases:

101



[ Reconnaissance

O Access

X Exploit Development
X Attack Launch

[0 Persistence

Interdependencies: This technique only randomizes instructions within basic blocks. To increase
its effectiveness, it should be used in combination with other ASLR techniques that randomize the
layout of the basic blocks within the address space.

Weaknesses: There are limitations to how much diversification can be achieved by randomizing
the binary in place. The experimental results show that this technique can modify, eliminate or
break approximately 75% of the gadgets in a binary. However, this demonstrates that some gadgets
still remain. Furthermore, the instructions are never re-randomized, and therefore are vulnerable
to memory disclosure.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: This technique makes it more difficult to carry out ROP attacks by alter-
ing the instructions and their locations to break the gadgets upon which the attacker relies. Some
gadgets remain, and could be used by a more determined attacker to carry out an attack. Alter-
natively, if an attacker can disclose the locations of gadgets that exist after in-place randomization
is applied, the attacker can still carry out a ROP attack.

Availability: Source code is publicly available at http://nsl.cs.columbia.edu/projects/orp/.

Additional Considerations: This defense does not defend against JIT-ROP [58] attacks, as an
attacker can disclose the gadgets after in-place randomization.

Proposed Research: The authors propose to extend the coverage of randomization through more
advanced data-flow-analysis methods. Furthermore, the tool was developed specifically for 32-bit
x86 PE executables, and the authors would like to support ELF and 64-bit executables.

Funding: Defense Advanced Research Projects Agency, Air Force Research Laboratory, European
Commision
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4.1.10 MORPHISEC
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:
Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [63] defends against control-flow hijacking attacks in userspace ap-
plication. In particular, the technique defends against attacks that exploit a priori knowledge of
the layout of memory.

Description:

Details: Morphisec is a commercial product and therefore technical details are not readily
available. From the marketing literature, the product randomizes the layout of memory, including
libraries. However, the granularity of randomization is unclear. Morphisec also maintains a copy
of the original memory layout. Upon malicious input to conduct code or control injection, the
randomized application will crash. Furthermore, the malicious input can be fed, presumably in an
isolated environment, to the original memory layout to conduct a forensic analysis. Finally, the
results of this forensic analysis can be forwarded over the network to a dashboard process where
an administrator can monitor the health of the enterprise.

Entities Protected: All applications that are processed by the product.

Deployment: There is not publicly available information on the systems on which this
technology can be deployed.

Execution Overhead:

e No publicly available information.
Memory Overhead:

e No publicly available information.
Network Overhead:

e No publicly available information.
Hardware Cost:

e No publicly available information.

Modification Costs:
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U Data

0 Source Code

O Compiler/Linker
[J Operating System
0 Hardware

O Infrastructure

(No modification required)

Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

U Seamless
O Simple Configuration
X Complex Configuration (System Admin)

[J Expert Operator
Kill-Chain Phases:

0 Reconnaissance

[J Access

X Exploit Development
X Attack Launch

[ Persistence

Interdependencies: The Morphisec marketing materials claim that the product complements
and cooperates with other security agents.
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Weaknesses: This defense does not defend against JIT-ROP [58] attacks, which disclose the
current location of gadgets in memory, and use that information to construct a malicious payload
on the fly.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
0O Limit Movement

0 Disable Movement

Impact on Attackers: This technique increases the difficulty of carrying out many types of
attacks. Additionally, the forensic analysis made possible by this technique could be used to
identify commonly exploited vulnerabilities, as well as the actors leveraging these attacks.

Availability: This is a commercial product, and demos and licensing are available for current
deployment.

Additional Considerations: None
Proposed Research: This technique would be more effective if it supported runtime re-randomization.

Funding: Investors and customers
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4.1.11 OXYMORON
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: This technique [64] defends against control injection attacks. The specific threat
model considered is that of JIT-ROP [58], in which it is assumed the attacker can disclose and/or
corrupt arbitrary memory. This allows the attacker to disclose the location of gadgets within a
program, even if they have been randomized at load time, and construct a ROP attack at runtime
that can be launched via a memory-corruption vulnerability.

Description:

Details: This technique applies ASLR at the page granularity. In order to prevent the
disclosure of code pointers within the executable, an additional level of indirection is added called
the Randomization-agnostic Translation Table (RaTTle), which maps an offset in the table to the
destination address. The RaTTle is stored in a different x86 memory segment, so that it is not
subject to memory disclosure. Oxymoron is developed as a static translation tool that will convert
existing references through the RaTTle.

Entities Protected: All programs that are converted using the Oxymoron tool.

Deployment: This technique relies on hardware support for memory segmentation, as is
available on x86. The technique can be used on any machine supporting this functionality.

Execution Overhead:
e Across all SPEC 2006 benchmarks, the authors observed an average overhead of 2.7%.
Memory Overhead:

e To support randomization at the page level, each page is a section in the ELF file, resulting
in 1.76% overhead in the file size.

e The additional instructions needed to jump through the RaTTle result in 12% overhead in
ELF file size for the SPEC 2006 benchmarks.

e The RaTTle consumes on average 19% additional memory in the code segment in the SPEC
2006 benchmarks.

Network Overhead:

e None
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Hardware Cost:
e None
Modification Costs:

0O Data

O Source Code

O Compiler/Linker
[J Operating System
[0 Hardware

O Infrastructure

(No modification required, as implemented by the authors. However, the technique could alterna-
tively be implemented in the compiler or the loader.)

Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
J Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
Kill-Chain Phases:

X Reconnaissance
O Access

X Exploit Development
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X Attack Launch

O Persistence

Interdependencies: None

Weaknesses: This technique has been shown vulnerable [65], as an attacker can still disclose
code pointers from the stack and/or the heap. A heap-allocated C++ object has a vtable, which
contains code pointers that are not redirected through the RaTTle that can be disclosed. It has been
shown that enough code pointers can be harvested through the stack and the heap to construct a
realistic exploit [65]. Furthermore, this technique does not protect code pages that are dynamically
generated, for example, as in JavaScript run in the browser.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

0 Disable Movement

Impact on Attackers: This technique makes disclosing the addresses of useful gadgets more
difficult. However, as discussed above, it is still feasible to disclose enough useful gadgets to
construct a malicious payload via the stack and the heap.

Availability: Not publicly available
Additional Considerations: None

Proposed Research: In order to provide better security, this technique would need to defend
against the enhanced JIT-ROP attack presented in [65]. Furthermore, it would be valuable to
randomize dynamically generated code pages.

Funding: Unknown
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4.1.12 DYNAGUARD
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:
Attack Techniques Mitigated: Code Injection and Control Injection

Details: Many code- and control-injection attacks begin with a stack-buffer overflow, which
allows the attacker to corrupt the stack to inject code or redirect control flow, a technique often
called stack smashing. To mitigate such attacks, stack canaries, or a random integer chosen at
program start time, is written to the stack before each return address. A stack overflow will
overwrite the canary before overwriting subsequent return addresses. The canary is checked before
returning to ensure that the return address has not been corrupted.

A recent attack technique called blind ROP (BROP) [66] has demonstrated how the stack
canary can be disclosed remotely via brute force on a service that restarts after each crash. This
technique [67] defends against BROP-like attacks that use brute force to disclose the stack canary,
which exploit the fact that existing stack-canary implementations, such as implemented in GCC,
use when a process forks, the parent and child process retain the same canary value.

Description:

Details: This technique changes the stack canary of the child process when it is forked. This
requires changing the canary value in the thread local storage (TLS), as well as within each frame
on the stack. To do so, each canary address is stored in a canary address buffer (CAB). When a
process forks, before the child process begins executing, every canary on the stack must be updated
to a new random value. This functionality can be added either at compile time, or through dynamic
binary instrumentation. The former approach is significantly more efficient, whereas the latter can
be applied without source code.

Entities Protected: All processes in which the technique has been applied.
Deployment: This technique could be employed on any generic machine.

Execution Overhead:

e The authors report a measured increase in the execution time of programs of 1.2% when the
technique is applied at compile time.

e The authors report a measured increase in the execution time of programs of 70% when the
technique is applied via binary instrumentation. However, compared to the baseline (binary
instrumentation, but no defense), the overhead is only 2.92%.

Memory Overhead:

109



e Minimal memory overhead. The code section is increased minimally by adding a few extra
instructions to log the canary address in the CAB. The CAB is also a small buffer, with one
word per stack frame.

Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

O Data

[ Source Code

X Compiler/Linker
[J Operating System
[0 Hardware

O Infrastructure
Expertise Required to Implement:

X Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

[J Expert Operator
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Kill-Chain Phases:

X Reconnaissance

[0 Access

X Exploit Development
X Attack Launch

[ Persistence

Interdependencies: This technique complements control-flow-integrity defenses, which check the
execution follows valid control flow. Furthermore, the version of this technique implemented via
dynamic binary instrumentation could conceivably be integrated with other defenses based on
dynamic binary instrumentation.

Weaknesses: Stack canaries are a simple, low-overhead way of increasing the burden on the
attacker. This technique makes stack canaries more resilient to brute-force attacks against the
stack canary such as BROP. However, there are many other ways a process can be exploited even
in the presence of this technique. For example, a memory-disclosure vulnerability can be used to
disclose the canary value, which allows the attacker to directly bypass this defense.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
0 Limit Movement

O Disable Movement

Impact on Attackers: This technique inhibits the ability of the attacker to disclose the stack-
canary value via brute-force in applications that fork new processes after each crash.

Availability: Source code is publicly available at https://github.com/nettrino/DynaGuard.

Additional Considerations: While the authors have presented two means of implementing this
technique (via the compiler and dynamic binary instrumentation), in cases where the source code
is available, it is preferable to deploy this technique via a compiler plugin.

Proposed Research: A potential avenue of future work would be to re-randomize the canary
value dynamically during the program’s execution. This would help defend against stack-smashing
attacks where the canary value has been gleaned by the attacker through a memory-disclosure
vulnerability. Given that the CAB stores the address of every canary value, implementing such
functionality would only require hooks at the relevant re-randomization points.

Funding: Office of Naval Research
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4.1.13 SHUFFLER: FAST AND DEPLOYABLE CONTINUOUS CODE RE-
RANDOMIZATION

Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: This technique [68] defends against control injection attacks. The specific threat
model considered is that of code reuse relying on memory disclosure. Code reuse, such as ROP,
requires the attacker to know where in memory gadgets are located. ASLR and other memory-
randomization techniques prevent naive ROP. However, memory-disclosure vulnerabilities can leak
addresses to the attacker, effectively de-randomizing memory and allowing ASLR to be bypassed.
Shuffler mitigates such attacks by periodically re-randomizing memory, which makes leaked ad-
dresses no longer useful for de-randomization after a small time window.

Description:

Details: Shuffler re-randomizes a process’ address space periodically, with a recommended
period of 50ms. This period is posited by the authors to be too rapid for an attacker to leak and
utilize a memory address while being infrequent enough to minimize performance degradation. It
re-randomzies at the granularity of individual functions. These are placed randomly throughout
the memory space by creating a permuted copy of the current memory layout concurrent with
program execution. A lookup table is used to track code pointers and update their value to the
newly permuted function location. Return addresses are handled differently, by XOR-ing each with
a per-thread key. This key is changed on every re-randomization. The authors note that using a
lookup-table approach for return addresses would induce substantial overhead due to their dynamic
nature. Once shuffling is complete, the execution is switched to the permuted copy and the original
layout is unmapped. In order to track code pointers, Shuffler requires binaries that retain symbol
and relocation data, but does not require access to source code.

Entities Protected: All user-space programs that are converted using the Shuffler tool.

Deployment: This technique requires a patch to the program loader in order to install
Shuffler threads inside running binaries.

Execution Overhead:
e Across all SPEC 2006 benchmarks, the authors observed an average overhead of 14.9% when
using a re-randomization period of 50 ms. This assumes a spare CPU core is available for
asynchronous shuffling computations, however.

Memory Overhead:

e Shuffler maintains an in-flight copy of code sections, which incurs a 100% increase in memory
usage.
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e Additionally, Shuffler itself incurs a 250 KB overhead per process.

e Shuffler also requires metadata on functions, symbols, and relocations, which varies per pro-
gram but is on the order of 30 MB-100 MB.

Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

U Data

O Source Code

O Compiler/Linker
X Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
[0 Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
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Kill-Chain Phases:

X Reconnaissance
0 Access
X Exploit Development

X Attack Launch

[ Persistence

Interdependencies: None

Weaknesses:  This technique re-randomizes periodically and at the granularity of functions.
Attackers may be able to take advantage of both of these properties. If a memory-disclosure
vulnerability can be triggered and a payload launched within the re-randomization period, then
the attack will succeed due to Shuffler acting too slowly to invalidate the data contained in the
memory disclosure. Additionally, if an attacker can find gadgets within the function pointed to by
a target pointer, those gadgets could still be used, as their locations relative to one another remain
constant across re-randomizations.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: This technique makes disclosing the addresses of useful gadgets more
difficult. However, as discussed above, it does not provide complete protection

Availability: Not publicly available
Additional Considerations: None

Proposed Research: This technique would benefit from finding a way to synchronize re-randomization
with attacker actions rather than relying on a fixed time period. In addition, re-randomizing on

the basic-block level rather than the function level would prevent attackers from being able to use
intra-function gadgets.

Funding: Office of Naval Research and National Science Foundation
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4.1.14 RUNTIME ASLR (RASLR)

Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: Runtime ASLR (RASLR) [69] defends against control-injection attacks. The specific
threat model considered is that of clone-probing attacks against daemonized servers. These attacks
rely on the fact that the child processes of daemonized servers (e.g., Apache, Nginx, OpenSSH)
share the memory layout of the parent process. This allows attackers to incrementally guess the
value of pointers in memory and brute force ASLR after at most 1024 guesses (for 64-bit systems).
A failed guess causes the process to crash, but the daemon will instantiate a new process with
the same layout as the old one, allowing the attacker to gradually de-randomize memory. This
technique re-randomizes the new process created by every fork system call, preventing attackers
from using clone probing attacks.

Description:

Details: RASLR re-randomizes the address space of a spawned child process at fork-
time, ensuring that every child has a different layout from each other and from their parent. The
granularity is at the module-level, that is, each executable or library is treated as a contiguous
whole whose base address is randomized. RASLR relies on dynamic taint tracking at run time
to identify pointers whose value must be updated after re-randomization. This process has no
false negatives (missed pointers that are not updated), and a near-negligible low false negative rate
(non-pointers are updated). It requires no access to source code or debugging symbols, and will
operate on arbitrary binaries.

Entities Protected: All user-space programs that operate as daemons and spawn sub-
processes to handle sessions or requests

Deployment: This technique requires a patch to the program loader.

Execution Overhead:

e RASLR must conduct a one-time operation at program load time that can add 10 seconds to
its startup time. After this, there is negligible overhead in the daemon process.

e Every time a child process is started, RASLR must re-randomize its memory layout. This
delays the sub-process startup time by less than 150 ms.

Memory Overhead:

e The authors did not report on memory overhead. It is likely minimal, as the randomizer only
exists in process memory at load time, and removes itself prior to execution.
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Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

0 Data

O Source Code

O Compiler/Linker
X Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
Kill-Chain Phases:

0 Reconnaissance

O Access
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X Exploit Development
X Attack Launch

O Persistence

Interdependencies: RASLR currently relies on the Pin dynamic analysis framework. In general,
some system for attaching and detaching from a process is required.

Weaknesses: This technique is not effective against attacks relying on memory disclosures (either
direct or indirect). It only applies to brute-force attacks that exploit predictable memory layouts
in child processes. Additionally, if an attacker can find gadgets within the module pointed to by a
target pointer, those gadgets could still be used, as their locations relative to one another remain
constant across re-randomizations.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
0 Limit Movement

O Disable Movement

Impact on Attackers: This technique makes brute-forcing of ASLR-protected daemons infeasible.
However, as discussed above, there are many other ways to attack such systems (e.g., memory
disclosures)

Availability: Not publicly available
Additional Considerations: None

Proposed Research: This technique would benefit from finer-granularity randomization to dis-
rupt use of gadgets with known relative offsets from one another. Additionally, re-randomization
during the lifetime of sub-processes could mitigate memory disclosures.

Funding: Office of Naval Research, Department of Homeland Security, United States Air Force,
and National Science Foundation
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4.1.15 LEAKAGE-RESILIENT LAYOUT RANDOMIZATION FOR MOBILE
DEVICES

Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: LR? [70] defends against control-injection attacks that rely on memory disclo-
sures. ASLR and other memory randomization techniques prevent naive ROP. However, memory-
disclosure vulnerabilities can leak addresses to the attacker, effectively de-randomizing memory
and allowing ASLR to be bypassed. The specific threat model considered is an attacker using
memory disclosures to conduct ROP attacks on mobile devices, whose hardware does not fully sup-
port protection of virtual memory. This makes many disclosure defenses, such as hardware-backed
execute-only memory (XoM), infeasible or impossible to deploy.

Description:

Details: LR? uses three techniques to mitigate memory disclosures: software-based XoM,
forward pointer hiding, and return pointer encryption. The first technique splits the address space in
two and relegates one half for code and one for data. This creates a single bit in the address that
denotes code vs data. By masking that address on load instructions (i.e., always testing that it
points to data), attackers trying to directly read code in order to find gadgets will cause a program
crash. This mitigates direct memory disclosures.

Forward pointer hiding replaces all function pointers to code with pointers to a randomized
trampoline table. When a pointer is dereferenced, code stubs in the table cause the original function
to be executed. This prevents attackers from learning where in code a pointer is pointing. Return-
address encryption has a similar effect, but instead of a lookup table, it uses XOR encryption with
a per-function key stored in XoM. These techniques mitigate indirect memory disclosures.

Entities Protected: All user-space programs that are converted using the LR? tool.

Deployment: Currently, LR? requires recompilation of source code in order to effect its
program transformations. The authors note that this is not a fundamental requirement, however,
and could in principle be conducted on binaries via rewriting.

Execution Overhead:

e Across all SPEC 2006 benchmarks, the authors observed an average overhead of 6.6%.
Memory Overhead:

e The authors reported a memory overhead of 5.6%.

Network Overhead:
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e None
Hardware Cost:

e None
Modification Costs:

O Data

X Source Code

O Compiler/Linker
X Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
0 Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

0 Reconnaissance
O Access

X Exploit Development
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X Attack Launch

O Persistence

Interdependencies: None

Weaknesses: The use of function-pointer trampolines has been successfully bypassed via profiling
of memory layout during execution [71]. These attacks rely on predictable stack and heap data
layouts to identify where the program is in execution, and infer based on this what functions
trampolines are pointing to. In addition, return pointers are protected by an XOR-based encryption
scheme whose key never changes. This could allow an attacker to eventually infer the key value by
repeated observation, as XOR is only secure when used as a one-time pad.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

0 Disable Movement

Impact on Attackers: This technique makes disclosing the addresses of useful gadgets more
difficult. However, as discussed above, it does not provide complete protection.

Availability: Not publicly available
Additional Considerations: None

Proposed Research: This technique would benefit from finding a way to efficiently re-randomize
the keys used to encrypt return pointers. Deployment would be made much simpler if the program
transformations could be made to a binary rather than source code. Finally, applying this technique
to Just-In-Time compilation (such as is used in modern browsers) could substantially increase its
coverage against attack vectors.

Funding: Defense Advanced Research Projects Agency and National Science Foundation
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4.1.16 BLENDER: SELF-RANDOMIZING ADDRESS SPACE LAYOUT FOR
ANDROID APPS

Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: Blender [72] defends against control-injection attacks on Android applications.
ASLR on Android is much weaker than on general purpose computers due to optimizations made to
increase app performance. These optimizations place pre-compiled code (Android apps are stored as
bytecode) and shared system libraries in predictable locations. Part of this code includes high-level
framework APIs compiled into native code, which makes powerful gadgets available to attackers.
For example, these include sending an SMS or getting GPS coordinates. Blender randomizes these
code regions on app start-up, restoring the guarantees of ASLR to the protected app.

Description:

Details: Blender consists of two primary components, each responsible for randomizing a
memory region whose location is made predictable by system optimizations. The first, BlenderLRM,
randomizes the location of system libraries. These libraries are pre-loaded in the address space due
to optimizations, and are dynamically linked to other libraries whose dependencies have already
been resolved at load-time. In order to randomize system library base addresses without breaking
these dependencies, BlenderLRM computes a dependency graph for each library and uses this to
update offset tables in its dependencies.

The second component, BlenderART, is responsible for randomizing the Android Runtime
(ART). This code region contains pre-compiled API functions that implement high-level operations
(e.g. sending an SMS) in native code usable by an attacker. Its memory location is fixed and cannot
normally be randomized due to the use of absolute addresses. BlenderART uses binary rewriting
to patch all absolute address references with new values after randomization.

Entities Protected: All user-space Android applications that are converted using the
Blender tool.

Deployment: Blender requires application developers to include it in their source code in
order to protect that app.

Execution Overhead:

e Blender performs a one-time randomization that increases app startup time by approximately
300 ms.

Memory Overhead:

e Blender incurs a constant overhead of 6 MB.
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Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

0 Data

X Source Code

O Compiler/Linker
0 Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
Kill-Chain Phases:

0 Reconnaissance

O Access
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X Exploit Development
X Attack Launch

O Persistence

Interdependencies: None

Weaknesses: Blender suffers from the weaknesses of traditional ASLR. A single memory disclo-
sure vulnerability can allow attackers to de-randomize memory and execute a ROP attack. Addi-
tionally, entropy-exhaustion or brute-force attacks may be possible. The authors do not perform a
comprehensive analysis of how many bits of entropy are added by their defense.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: This technique restores the standard guarantees of ASLR to Android
applications, increasing the difficulty of launching code-reuse attacks. However, as discussed above,
it suffers from the well-known weaknesses of ASLR.

Availability: Not publicly available
Additional Considerations: None

Proposed Research: This technique would benefit from finding a way to efficiently re-randomize
memory in order to mitigate memory disclosures. In addition, it currently has to be included by
application developers on a per-app basis. A binary-only solution would enable users to selectively
protect applications and make deployment much easier.

Funding: Unknown
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4.1.17 READACTOR
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: Readactor++ [73] and the Readactor [74] defense it builds upon defend against
control injection attacks. Specifically, the threat model considers code-reuse attacks that rely on
memory disclosure to bypass ASLR or other memory-randomization approaches. Two kinds of
disclosure are considered. Direct memory disclosure is the leaking of the contents of code regions
to an attacker. Indirect disclosure is the leaking or pointers into a code region, which attackers can
both use directly, as well as use to potentially de-randomize that region. Readactor++ mitigates
these attacks through a combination of execute-only memory (XoM) and fine-grained code diversity.

Description:

Details: Readactor++ relies on four broad techniques to defend different regions of memory,
and has both compile-time and run-time components. The foundation of the defense relies upon
implementing XoM (via extended page tables), and using this capability to render code regions
unreadable. This alone prevents direct disclosure, as any attempt to leak code memory will cause
an access violation.

To prevent indirect disclosure of pointers into code on the stack or heap, Readactor++ use
code-pointer hiding. This technique replaces all pointers to code with "trampoline” pointers into an
execute-only lookup table. When the trampoline is dereferenced, code in the lookup table invokes
the original function. This means attackers cannot leak the location of the code region, only the
location of the trampoline region, which does not contain usable gadgets.

Attackers could potentially still reuse code in execute-only regions by brute-forcing or guessing
its location. To mitigate this, Readactor++ uses four compile-time code transformations to add
fine-grained diversity to the program. Function permutation reorders the layout of functions in
memory. NOP insertion probabilistically adds instructions that have no effect, but change the
address of other instructions that might be used in gadgets. Register-allocation randomization
changes the dataflow between registers. This disrupts the input and output registers of any gadgets
used by the attack. Finally, stack-slot randomization permutes the stack location where saved
register values are stored. These saved registers are often used as data inputs to gadgets, and
randomizing them causes the wrong value to be placed in a register used by an attacker.

Finally, Readactor++ also protects sensitive tables of function pointers. These include virtual
function tables in C++, and the Procedure Linkage Table (PLT) used by Linux processes. It uses
a combination of execute-only memory and booby traps. First, the tables are split into a read-only
and execute-only component, the latter of which contains sensitive code pointers. The table entries
are permuted in a random order. This prevents direct disclosure. However, attackers could still try
to randomly execute regions of these tables and observe the result. Due to their fairly small size,
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this could be a source of indirect disclosure. To prevent this, Readactor++ adds booby-trap entries.
These are never invoked by the legitimate program, but if an attacker tries randomly executing
table regions, these will be triggered with high probability. A booby trap crashes the program and
displays a warning that an attack was attempted.

Unlike many memory disclosure defenses, Readactor++ also protects Just-In-Time (JIT)
compilers used by most modern web browsers. By its nature, JIT violates the usual rule that
memory cannot be both writable and executable, which normally prevents code injection attacks.

Entities Protected: All user-space applications that are recompiled using Readactor++.

Deployment: Readactor++ requires a small kernel patch, as well as recompilation of source
code on any protected application. It is currently only implemented on Linux.

Execution Overhead:

e When tested against the SPEC 2006 CPU Benchmark, Readactor++ had an average overhead
of 8.4% and a worst-case overhead of 24%.

Memory Overhead:

e The authors did not provide an analysis. Trampoline tables would be the largest source of
overhead, and would scale with the number of functions in a program.

Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

X Compiler/Linker
X Operating System
U Hardware

O Infrastructure

Expertise Required to Implement:
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O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
J Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[J Access

X Exploit Development
X Attack Launch

O Persistence

Interdependencies: Readactor+—+ relies on Extended Page Tables to efficiently implement XoM.
This is not available on all CPU platforms.

Weaknesses: Readactor++ attempts to avoid indirect memory leakage through the use of tram-
polines for code pointers. This approach, however, can by bypassed by profiling the data-memory
layout of an application [71]. By inferring what function is pointed to by a trampoline pointer,
attackers can still mount Return-into-Libc-like attacks. Additionally, execute-only protections can
be bypassed by using DMA operations to access memory directly [71]. This permits direct memory
disclosures and bypasses the technique. Finally, Readactor does not have a re-randomization com-
ponent. This may enable attackers to brute-force applications that respawn on crash, especially if
their memory layout is preserved (e.g., server daemons).

Types of Weaknesses:

X Overcome Movement

X Predict Movement
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[ Limit Movement

O Disable Movement

Impact on Attackers: This technique makes code-reuse attacks relying on memory disclosures
much more difficult. Attackers must find a way to either bypass the defense (e.g., software-based
DMA attacks) or infer the functions pointed to by trampolines, and subsequently overcome the
dataflow randomization applied to registers.

Availability: Not publicly available
Additional Considerations: None

Proposed Research: This technique would benefit from finding a way to efficiently re-randomize
memory in order to further mitigate memory disclosures. As discussed above, this makes applica-
tions that respawn on crash potentially vulnerable to brute-force attacks. In addition, extending
Readactor++ to include IOMMU support would mitigate DMA-type attacks on memory permis-
sion.

Funding: Defense Advanced Research Projects Agency
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4.1.18 HEISENBYTE
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: Heisenbyte [75] defends against control-injection attacks. Specifically, the threat
model considers code-reuse attacks that rely on memory disclosure to bypass ASLR or other memory
randomization approaches. Rather than trying to prevent direct or indirect disclosure, Heisenbyte
instead aims to make disclosed addresses impossible to actually exploit. That is, the gadgets found
at an address, if used by the attacker, will cause the program to crash.

Description:

Details: Heisenbyte mitigates memory disclosures via destructive memory reads. In order
to find gadgets, attackers must read executable memory, which is distinct on the instruction level
from the CPU fetching bytes of code to execute. The defense takes advantage of this distinction.
Whenever a user-space process reads executable memory, the bytes read are immediately random-
ized. This means that if an attacker attempts to use those bytes in a gadget, the program will
crash as the random bytes are executed.

Heisenbyte does not randomize bytes if the kernel reads executable memory, as there are
legitimate reasons for such reads. In addition, Heisenbyte must identify and, to the extent possible,
relocate data that is intermixed with executable code memory pages in order to minimize overhead.
This is achieved by a binary static analysis phase prior to execution of the program to be protected.

During runtime, Heisenbyte creates a copy of an executable code page the first time that page
is read from. All read operations are resolved against the original page. However, each byte read
in the original page is randomized in the copied page. All CPU fetch instructions (which are used
to execute code) are resolved against the copied page. Thus, if executable memory is ever read,
any subsequent attempt to run it will cause a program crash.

Entities Protected: User-space applications converted using Heisenbyte

Deployment: Heisenbyte requires relocation data to be available for binaries, and is cur-
rently implemented for Windows-based applications.

Execution Overhead:

e Across all SPEC 2006 benchmarks, the authors observed an average overhead of 18.3% and
a worst-case overhead of 62%.

Memory Overhead:

e The authors reported an average overhead of 0.8%, and a worst-case of 10% on the SPEC
benchmark.
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Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

0 Data

O Source Code

O Compiler/Linker
X Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
Kill-Chain Phases:

0 Reconnaissance

O Access
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X Exploit Development
X Attack Launch

O Persistence

Interdependencies: Heisenbyte’s security guarantees require fine-grained ASLR to also be de-
ployed.

Weaknesses: This technique does not defend against indirect memory disclosure via remote
side-channels, which have been shown to be feasible attacks on real systems [76]. In addition,
it is possible that attackers could infer adjacent code in memory without explicitly reading that
code [77], within the bounds of ASLR granularity, by comparing the read code against a local copy
of the binary. These adjacent gadgets would still be available, as their memory addresses were
never explicitly read.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: This technique makes usage (but not leakage) of memory disclosures more
difficult. However, as discussed above, it does not provide complete protection.

Availability: Not publicly available
Additional Considerations: None

Proposed Research: This technique would benefit from finding a way to detect the use of remote
side channels, or to invalidate their leaked data via, e.g., re-randomization of executable memory.
Additionally, randomizing adjacent code on the same memory page could mitigate inference attacks.

Funding: National Science Foundation
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4.1.19 STACKARMOR
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: StackArmor [78] is designed to protect against exploitation of spatial and temporal
stack-based vulnerabilities. Spatial vulnerabilities correspond to corruption of memory outside the
memory region intended for a buffer (e.g., an overflow). Temporal vulnerabilities correspond to
use of memory that is no longer valid, e.g., uninitialized data or freed data. It does not consider
a specific attack technique such as ROP, but aims to mitigate any kind of attack relying on stack
vulnerabilities.

Description:

Details: StackArmor relies on static binary analysis and binary rewriting of a program
in order to provide three defensive program transformations. First, all functions with pointers
to local variables are identified, as these are not provably safe from spatial or temporal attacks.
The stack frames of these functions will be placed at a random location rather than in contiguous
stack memory, and will be isolated (surrounded by unmapped memory) from other data. Next,
all local variables that are not provably initialized will be initialized to 0. This prevents temporal
vulnerabilities arising from use of uninitialized data. Finally, any buffer that can be safely relocated
(i.e., will not cause a potential program crash) will be placed in isolated and randomized memory.

Entities Protected: All user-space applications that are converted using StackArmor.

Deployment: StackArmor requires a binary with debug symbols available for full protection.
For stripped binaries, only stack frame randomization and data initialization can be provided.

Execution Overhead:

e When tested against the SPEC 2006 CPU Benchmark, StackArmor had an average overhead
of 28%.

Memory Overhead:

e Worst-case memory overhead on the SPEC benchmark was 195MB, but the authors note that
this is highly workload-dependent.

Network Overhead:
e None

Hardware Cost:
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e None
Modification Costs:

] Data

O Source Code

O Compiler/Linker
0 Operating System
] Hardware

O Infrastructure

No modifications are required to the above components. The technique re-writes the binary itself.

Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

[0 Reconnaissance
O Access
X Exploit Development

X Attack Launch
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[ Persistence

Interdependencies: The implemented version of StackArmor relies on the PEBIL binary instru-
mentation platform.

Weaknesses: StackArmor is designed to increase the granularity of randomization beyond what
can be provided by ASLR. To this end, it suffers from the same weaknesses as ASLR: it is vulnerable
to memory disclosures and may not actually provide a helpful amount of entropy (this is not
analyzed by the authors). In addition, the technique relies on imprecise static binary analysis.
This imprecision limits what can actually be randomized without crashing a program on legitimate
inputs. Finally, no analysis is provided of how much StackArmor actually impedes ROP-type
attacks. For example, a ROP attack inside a single stack frame may not be prevented by any of
these techniques.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: This increases the granularity of stack randomization. It may provide
some barrier to ROP-type attacks, but it is unclear how much added security it actually provides.
In addition, attackers can simply use heap-based attacks without being impacted by this defense.

Availability: Not publicly available
Additional Considerations: None

Proposed Research: This technique would benefit from finding a way to efficiently re-randomize
memory in order to mitigate memory disclosures. In addition, it would be useful to actually quantify
how much randomization is being added above what ASLR provides. If some benefit is observed,
extending this defense to the heap may be valuable.

Funding: European Research Council
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4.1.20 ISOMERON
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: Isomeron [65] defends against control injection attacks, specifically ROP and JIT-
ROP [58]. Under such a threat model, it is assumed that the attacker has access to a memory-
disclosure vulnerability, by which it may disclose the addresses of gadgets within executable memory.
These gadgets can then be leveraged to construct a malicious payload through a script. For example,
a website may load malicious javascript, which exploits a memory disclosure to disclose the location
of (potentially randomized) gadgets, and then constructs and executes a malicious payload using
those gadgets.

Description:

Details: Isomeron relies on a technique called program twinning, in which two copies of
the program executable are placed within the address space. One version of the application A,
is the original program, while the other copy, Ay, is a diversified copy of the same program.
Each of the copies are functionally equivalent, but their gadgets are located in different locations,
both absolutely, and relatively. During runtime, execution flips randomly between the two copies.
The attacker cannot infer whether A or Ay;, is executing, and therefore cannot predict which
version of each gadget should be used. Therefore, the probability of a successful attack diminishes
exponentially with the length of the gadget chain.

Entities Protected: All programs executed through Isomeron.

Deployment: This technique can be implemented on any generic machine. The authors
implemented this technique through dynamic binary instrumentation, but note that it could be
implemented in the compiler instead. For maximal effect, Isomeron depends upon hardware support
(e.g., memory segmentation or Intel SGX) to protect Isomeron-specific data structures, which may
not be available on all hardware platforms.

Execution Overhead:

e The authors report an average execution time increase of 19% over the PIN dynamic binary
instrumentation framework for the SPEC 2006 benchmark.

e Dynamic binary instrumentation itself, as discussed in Section 4.1.12, induces 70% overhead
on its own.

Memory Overhead:
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e The code size of the application is at least doubled to account for the twin program copy.
Additional memory is required to maintain Isomeron-specific data structures. The authors
did not specifically quantify this overhead.

Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

O Data

[ Source Code

X Compiler/Linker
[J Operating System
[0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

0 Seamless
X Simple Configuration
O Complex Configuration (System Admin)

[J Expert Operator

135



Kill-Chain Phases:

J Reconnaissance
0 Access
X Exploit Development

X Attack Launch

[ Persistence

Interdependencies: This technique, as the authors implemented it, relies on dynamic binary
instrumentation, similar to other MTD techniques (e.g., Dynaguard, see Section 4.1.12). It may be
possible to implement multiple such techniques on top of a common dynamic binary instrumentation
framework, which in some application domains may justify the increased overhead induced by
dynamic binary instrumentation.

Weaknesses: The primary weakness of Isomeron is its runtime overhead, which renders it un-
tenable in most application domains. Additionally, hardware support, either through Intel SGX
or memory segmentation, is required to protect Isomeron-specific data structures. If such data
structures are compromised, the attacker could predict or decide which code copy will execute in
the future.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
O Limit Movement

0 Disable Movement

Impact on Attackers: This technique does not fundamentally prevent attacks, however, it makes
them rather unlikely to be successful. For example, the authors noted that CVE-2010-1876 in
Internet Explorer could be exploited with a ROP-chain of 6 gadgets. The likelihood of carrying out
this attack in the presence of Isomeron is only 1.56%, and attacks that rely on longer ROP-chains
are exponentially more unlikely to succeed.

Availability: Source code is not publicly available.

Additional Considerations: The components of Isomeron must themselves be protected against
code and data tampering. This could be accomplished through Intel SGX extensions or segmenta-
tion.

Proposed Research: The authors indicate that this technique could be implemented in the
compiler. This would significantly decrease the overhead of the technique by avoiding the need to
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use dynamic binary instrumentation. This is an important avenue for future research, as there are
likely independent research challenges associated with such an implementation.

Funding: Unknown
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4.1.21 OPAQUE CONTROL-FLOW INTEGRITY
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: This technique [79] assumes a very strong threat model in which an attacker may
find and disassemble all code pages of the victim process. Therefore, the attacker may identify
all gadgets. Furthermore, it is assumed that the attacker can read and write the full contents of
the heap and stack. This threat model admits code-reuse techniques such as JIT-ROP, as well as
attacks against coarse-grained control-flow integrity (CFI) techniques.

Description:

Details: Opaque CFI (O-CFI) combines coarse-grained CFI with fine-grained code diversity.
Coarse-grained CFI checks that the target address of a control-flow transition must be within a
valid range (Finer-granularity CFI techniques with higher runtime overhead exist that enable more
precise checks of which target addresses are valid.) By randomizing the code-section address space
of the program, the bounds of the valid control-flow paths are changed. Each program instantiation
is randomized differently, therefore, the set of gadget chains that are considered valid with respect
to CFI are different. Therefore, while an attacker may be able to identify all of the gadgets in
a program, the program diversity renders the admissible gadget chains different for each program
invocation, which thwarts the ability of the attacker to reliably compromise the system.

Entities Protected: Any program that is processed by the O-CFI binary rewriting tool.

Deployment: This technique could be applied on any generic machine. The implementation
the authors present [79], is based on binary rewriting. The authors note that this technique could
also be implemented in the compiler.

Execution Overhead:

e The authors report an average runtime overhead of 4.7% for the SPEC 2000 benchmarks.

e The authors report an average offline processing time of 5.85s for the SPEC 2000 benchmarks.
This processing time is necessary to rewrite a binary to instrument it with O-CFL.

Memory Overhead:

e For the SPEC 2000 benchmark, the binary size increased by, on average, 137%.

e For the SPEC 2000 benchmark, the code-segment size increased by, on average, 71%.

Network Overhead:
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e None
Hardware Cost:

e None
Modification Costs:

O Data

O Source Code

X Compiler/Linker
0 Operating System
0 Hardware

O Infrastructure

(If implemented via binary rewriting, no modifications are required to the above components.)

Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

O Seamless
X Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

O Access
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X Exploit Development
X Attack Launch

O Persistence

Interdependencies: None

Weaknesses: This technique is vulnerable to more recent attacks against fine-grained CFI, such
as Control Jujitsu [34]. Such techniques exploit the fundamental imprecision of static analysis for
the generation of the control-flow graph. Gadgets can be chained together to construct an attack
that static analysis cannot prove to be invalid control flow. Such attacks are applicable against
O-CFTI as well.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
0 Limit Movement

O Disable Movement

Impact on Attackers: O-CFI adds additional constraints on the attacker by limiting and ran-
domizing the gadget chains that can be legally executed. However, there is evidence to support
that legal gadget chains can be constructed to conduct a deterministic attack against O-CFI [34].

Availability: Source code is not publicly available.

Additional Considerations: At the time of writing, Intel MPX hardware extensions were not
widely available. These hardware extensions can be used to accelerate the CFI checks, which would
in turn reduce the runtime overhead of O-CFI.

Proposed Research: By implementing O-CFI within the compiler instead of via binary rewriting,
a more precise control-flow graph is available. As inaccuracy in the static analysis weakens the
security of a CFI technique, it stands to reason that the compiler version of O-CFI could offer
moderately improved security over the binary-rewriting version presented.

Funding: National Science Foundation, Air Force Office of Scientific Research, Raytheon Com-
pany, Defense Advanced Research Projects Agency, Mozilla Corporation, and Oracle Corporation
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4.1.22 ASLR-GUARD
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: This technique [80] defends against a strong threat model that permits arbitrary
memory read/write capabilities. It is assumed that the attacker has access to a copy of the program,
on which they can conduct any program analysis. DEP is assumed to be enabled, and therefore
the attacker’s primary goal is to divert the control flow to execute arbitrary malicious logic.

Description:

Details: Address-space randomization techniques are fundamentally vulnerable if an attacker
can leak the location of attacker-relevant code. ASLR-Guard builds a layer of security on top of
address-space randomization techniques in order to prevent the disclosure of code locators, such
as code pointer or a vtable pointer, or other data that can be used to infer a code address. To
do so, ASLR-Guard encrypts all code locators before storing them in the data segment of the
program’s memory space, (i.e., on the stack or heap). In order to accomplish these goals, ASLR-
Guard establishes a safe vault, where all plain-text code locators are stored. The base address of
this region is stored in a dedicated register. Additionally, they designed a technique similar to a
shadow stack, which they call AG-Stack, that protect the return addresses and OS-injected code
locators. The AG-Stack system maintains two stacks, each of which uses different registers. One
stack stores sensitive data such as return addresses and function pointers, while the other stack
maintains regular data.

Entities Protected: ASLR-Guard protects all programs that are compiled using a compiler
with support for this technique.

Deployment: This technique could be applied on any generic machine.

Execution Overhead:

e The authors report minimal overhead (on average <1%) on the SPEC 2006 benchmarks,
though some programs exhibited as much as a 10% increase in execution time.

e The author report 31% increase in the load time on average, or roughly 0.8us.
Memory Overhead:

e The executable file size increase is 6.26% for the SPEC 2006 benchmarks.
Network Overhead:

e None
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Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

X Compiler/Linker
0 Operating System
U Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

X Reconnaissance

[0 Access

X Exploit Development
X Attack Launch
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[ Persistence

Interdependencies: This technique is tightly coupled with the address-space randomization it
uses. Incorporating ASLR-Guard with other address-space randomization technique, particularly
ones based on re-randomization, may pose significant research and/or engineering challenges.

Weaknesses: While ASLR-Guard encrypts all code locators, if an attacker can correlate an en-
crypted code locator and its associated functionality, it may still be feasible to carry out a code-reuse
attack [81].

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: This technique significantly hinders the attacker in conducting control
injection attacks against ASLR by making it much more difficult to disclose the addresses of relevant
gadgets.

Availability: Source code is available at https://github.com/sslab-gatech/aslr-guard.
Additional Considerations: None

Proposed Research: The current prototype only protects static code. A future challenge is to
provide the same techniques to dynamically generated code.

Funding: National Science Foundation, Office of Naval Research, Department of Homeland Se-
curity, United States Air Force, Defense Advanced Research Projects Agency, Korea’s Electronics
and Telecommunications Research Institute
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4.1.23 TIMELY ADDRESS SPACE RANDOMIZATION
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Flow Hijacking

Details: This technique [82] defends against exploits that hijack control flow by forcing a
memory disclosure and using that leaked information to build the main payload. The attacker
is assumed to have unlimited access (in both time and space) to arbitrary memory-disclosure
vulnerabilities and memory-corruption vulnerabilities anywhere in the program or its libraries and
other dependencies. It assumes that the attacker does not have out-of-band access to memory
contents from an external source.

Description:

Details: This technique repeatedly re-randomizes the location of all executable code in a
process, including linked code, during runtime. The re-randomization is cued by the operating
system based on the tracking of input/output system-call pairs, such that re-randomization is
performed immediately before acting on program input whenever a program output has occurred
since the most recent re-randomization. Although the threat model assumes that an attacker can
trigger a memory disclosure at will, the timing of the re-randomization ensures that any leaked
information about the location of program code is obsolete before the attacker can act on it. All
executable regions of memory are randomized independently of each other, and the granularity of
the randomization is based on the native ASLR randomization of the operating system. The main
advantage of the technique is that it synchronizes the defensive action with that of the attacking
action rather than performing a one-time randomization step or relying on arbitrary timings and
assuming that the attacker will conform to its defensive model. The technique is intrusive, requiring
modifications to an application’s build process and to the operating system itself.

Entities Protected: Programs written in the C language that have been built with an
appropriate compiler and run on an appropriately modified Linux operating system according to
the specifications of this technique.

Deployment: This technique requires a modified compiler and a modified operating system.
Modified components are compatible with non-modified ones, meaning that programs built with
the modified compiler run normally on unmodified operating systems and unmodified programs
run normally on modified operating systems (albeit without extra protections in either case).

Execution Overhead:
e Ranges from negligible to approximately 10%, with an average overhead of 2.1%
Memory Overhead:

e Ranges from negligible to a few megabytes
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Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

0 Data

O Source Code

X Compiler/Linker
X Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
Kill-Chain Phases:

X Reconnaissance

O Access
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O Exploit Development
X Attack Launch

O Persistence

Interdependencies: This technique works in conjunction with the base operating system ASLR
implementation.

Weaknesses: The principle security weakness of this technique is that it does not re-randomize
data locations and is thus vulnerable to attacks that rely on data-only operations. Examples include
use of pointers to function pointers, or data-oriented programming techniques [83]. Unfortunately
this technique cannot be extended to data location re-randomization while also maintaining com-
pliance with the C standard. The technique is also vulnerable to shortcomings of the base ASLR
implementation: in standard commercial implementations of ASLR, partial pointer overwrites —
overwrites that target only the lower bits of an address in order to redirect control to another
portion of the same segment — are an effective attack. However, by the same token, this technique
also gains the benefits of any later ASLR improvement. Performance overhead is modest; however,
there are a few legal language constructs that cannot be automatically handled, such as in-line
assembly or union type punning. C programs that specifically implement just-in-time compilation
techniques cannot be protected at all by this technique.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: This technique prevents attackers from learning any usable information
about program code locations using memory-disclosure exploits. Attackers must therefore craft
their exploits to be entirely agnostic about the location of program code segments, which has
historically required a greater level of effort.

Availability: No code is publicly available.
Additional Considerations: None

Proposed Research: This technique directly benefits from the improvement of base ASLR im-
plementations, which is already an area of research with broad utility. Additionally, a companion
technique is needed in order to guard against data-only attacks.

Funding: Department of Defense

146



4.1.24 TIMELY RANDOMIZATION APPLIED TO COMMODITY EXECUTA-
BLES AT RUNTIME

Defense Category: Dynamic Software
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection, Control Injection, Data Leakage

Details: TRACER [84] mitigates control- and code-injection attacks. The threat model
considers an attacker that can interact repeatedly with the target program, and is able to read and
write to arbitrary addresses in memory. They have access to both relative and absolute memory
operation primitives, and can use both spatial and temporal vulnerabilities. The authors consider
both attackers attempting to gain arbitrary code execution, as well as attackers trying to leak
sensitive data in memory.

Description:

Details: This technique re-randomizes the Windows Import Address Table (IAT) of a running
process every time a pair of write and read I/O operations occurs. It also re-randomizes the
IAT when a configurable time period has elapsed if no I/O has occurred. Attempts to use the
original IAT will cause a program crash. Attempts to use the new IATs will be ineffective as
re-randomization prevents an attacker from using any function-location information leaked from
the IAT in an attack. The protection is accomplished by patching any code in the application
that references the original TAT to point it to trampolines that decrypt a protected pointer to the
randomized IAT. This patching is done on every re-randomization.

Entities Protected: Commodity Windows executables running on the Windows operating
system.

Deployment: TRACER is a small application installed by an administrator on a Windows
computer to be protected. It requires a binary for the application to be protected but does not
require source code.

Execution Overhead:

e TRACER was evaluated on the SPEC 2006 CINT benchmark. It has an average overhead of
around 4% with a maximum of 7.5%.

Memory Overhead:

e There is a small fixed memory overhead proportional to the number of modules loaded by a
running application under TRACER. protection.

Network Overhead:

e None
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Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

O Compiler/Linker
0 Operating System
U Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[0 Access

X Exploit Development
X Attack Launch
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[ Persistence

Interdependencies: This technique is best paired with other standard Windows mitigations such
as DEP and ASLR.

Weaknesses: Only protects against attacks that use the IAT directly to look up function locations.
Other methods such as walking the Process Environment Block are not considered. Keys used to
encrypt trampoline targets are simple to break (XOR).

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: TRACER eliminates the most common vector used by malware for locating
Windows function addresses for hooking.

Availability: No code publicly available.
Additional Considerations: None

Proposed Research: Further protections against other function location lookup methods such
as PEB should be investigated.

Funding: Department of Defense
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4.1.25 POLYVERSE
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization
Threat Model:

Attack Techniques Mitigated: Control Injection

Details: Polyverse is a commercial company that has three primary technologies based on
moving-target defenses. Since these techniques are closest to Address Space Randomization tech-
niques, we present them collectively here, but some of them also show aspects of dynamic software
(e.g., the compiler-based diversification) and dynamic platform (e.g., rapid cycling) properties.

Description:

Details:  Polyverse provides three different products. The first product is a compiler-
based randomization technique. This provides an install-time randomization that scrambles the
program binary generated from the source code without affecting the semantics of the program.
The scrambling can be performed by simply pointing the Linux package manager at the proper
repository (a one-line command). The second product applies a similar randomization to closed-
source applications where the source code is unavailable (primarily for the Windows operating
system). This technique employs binary rewriting to apply a boot-time randomization to the
layout and instructions of close-source binaries. The third product is a rapid cycling technology
that can be applied to continuously running services (e.g., web servers) to periodically restore their
environment to a pristine, good state. It is built using containers (e.g., Docker), and it periodically
removes possible attacker persistent foothold on the machine. The recycling is performed through
a load balancer that can setup and tear down web-server instances and balance the load among
active instances.

Entities Protected: All software that has been protected by Polyverse techniques
Deployment: Can be deployed on any Windows or Linux machine

Execution Overhead:

e Binaries scrambled via the compiler have negligible performance overhead. COTS binaries
scrambled via binary rewriting have negligible performance overhead at runtime, but add a
five-second latency at startup.

Memory Overhead:

e Negligible

Network Overhead:

e There is no networking overhead for binary scrambling. Marketing literature reports 13ms
additional latency for the rapid cycling technology
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Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

X Compiler/Linker
0 Operating System
U Hardware

O Infrastructure
Expertise Required to Implement:

X Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

X Reconnaissance

[0 Access

X Exploit Development
X Attack Launch
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X Persistence

Interdependencies: Unknown

Weaknesses: Two of the Polyverse products implement one-time randomization. Such techniques
are vulnerable to information leakage, in which an attacker may be able to discover the location or
content of relevant code to construct an attack. However, unlike traditional ASLR, in which the
disclosure of one address gives sufficient information for an attacker to infer the entire program’s
address space, under Polyverse, an attacker would require far more information to be leaked. For
a more complete discussion of the amount of information leakage necessary to conduct an attack
under different randomization granularities, we refer the reader to [76].

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

0 Disable Movement

Impact on Attackers: Without information leakage, control hijacking attacks will be significantly
hindered by Polyverse techniques as guessing the right scramble is prohibitively hard for an attacker.
In practice, attackers have to resort to information leakage to attack the scrambled code. This often
requires a separate vulnerability, which raises the attack cost for the attackers, and prevents large-
scale compromises.

Availability: Commercially available from Polyverse

Additional Considerations: All three techniques are built to be easily configurable through a
one-line command, which simplifies deployment. There may be modest performance overhead in
practice due to load balancing and rapid cycling.

Proposed Research: None

Funding: Private investors
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4.2 INSTRUCTION-SET RANDOMIZATION
4.2.1 G-FREE
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Instruction Set Randomization
Threat Model:
Attack Techniques Mitigated: Control Injection

Details: This technique [85] aims to mitigate return-oriented programming (ROP) attacks
against executables compiled with the modified compiler. It does not fully protect against return-
to-libc type attacks where the attacker wishes to execute an entire function from the target program.

Description:

Details: Return-oriented attacks consist of an attacker redirecting control of a program back
into itself at specific useful sequences of instructions. This way, no code needs to be injected but
the attacker can still achieve malicious behavior by running pieces of the original executable in the
wrong order to achieve arbitrary results. The authors note that all return-oriented programming
attacks chain together pieces of code that ultimately each end with a free branch instruction. These
free branch instructions are specific uses of return or jump instructions [86] where the target of the
branch is dependent on a value on the stack or in a register (things that can be compromised by
the attacker). If the attacker cannot find any useful code ending in a free branch, then he or she
can only execute full function calls like in a return-to-libc attack, effectively eliminating generalized
return-oriented programming.

The first step to stopping ROP is eliminating all misaligned free branch instructions. Since
modern instruction sets are variable length, an attacker can often take a series of instructions and,
by jumping into the middle of one of those instructions, execute an instruction on the CPU that
never originally existed in the executable. This new instruction is a combination of the ending bits
from one instruction and the starting bits of the next. Any free branch instructions that could
be created in this way are a side effect of instruction ordering, and removing them would reduce
the number of free branches available to an attacker by a large amount. They must be removed
carefully, however, since the program semantics must remain unchanged. The authors accomplish
this by scanning for these misaligned free branch instructions and inserting No Operation Performed
(NOP) instructions to break them up. NOPs do not effect program execution and so can safely
act as buffers to prevent adjoining instructions from incidentally creating a misaligned free branch.
Additionally, these NOPs are arranged into a so-called alignment sled, which is a long sequence of
NOPs, so that no matter what the alignment was when execution reached the start of the sled, by
the time it reaches the end, it will be realigned correctly. This is possible because NOPs are the
shortest instruction and eventually execution will align onto one of them and continue normally.

The second protection mechanism used is a careful encryption of the return pointer on the
stack. At the function call entry point, the return pointer is encrypted (using XOR with a random
key) and pushed onto the stack. A set of instructions is also inserted as a footer, directly above
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the return instruction, so that the pointer is decrypted before return is called. If, at any point
in the middle of the function, a stack overflow occurs, an attacker could not put a value into the
return pointer that would be successfully decrypted into his target address. These two techniques
together prevent generalized return-oriented attacks.

Entities Protected: Protects all binaries compiled with the modified compiler.
Deployment: Can be deployed on any generic machine by modifying the compiler.

Execution Overhead:
e Approximately 3% slowdown.
Memory Overhead:
e Approximately 26% increase in executable size.
Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

X Compiler/Linker
[J Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)

X Custom Programmer (General Knowledge)
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O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
J Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
Kill-Chain Phases:

00 Reconnaissance

[J Access

X Exploit Development

X Attack Launch

0 Persistence
Interdependencies: A ROP protection technique (such as G-Free) should ideally be combined
with other memory protection techniques (such as ASLR or function-pointer encryption.)

Weaknesses: The encryption used is simply XOR so this technique relies on the fact that the
attacker cannot read portions of the memory (memory secrecy) [87-89]. If the attacker could gain
access to the return pointer value, he or she could recover the key and forge a new return pointer
that would be interpreted correctly by the return instruction.

Types of Weaknesses:

X Overcome Movement

X Predict Movement

0O Limit Movement

(] Disable Movement
Impact on Attackers: Restricts attackers to return-to-libc style attacks where whole functions
are used instead of attacks using gadgets or misaligned instructions.
Availability: No code publicly available.

Additional Considerations: A ROP protection techniques is only effective when it is applied
to every application running on a machine. If an application or library is not compiled with this
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technique, the entire system is vulnerable to ROP attack. This makes compiler-level defenses
against ROP limited in scope. There are similar techniques for protection against specific types of
attacks [90] (e.g., spraying attacks).

Proposed Research: An operating system-level protection against ROP is necessary to defend
against ROP in all the libraries and applications. More importantly, the actual capability of ROP
attacks in unknown at this point. More research is required to understand the full power of ROP
attacks.

Funding: European Union Seventh Framework Programme and European Commission
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4.2.2 PRACTICAL SOFTWARE DYNAMIC TRANSLATION
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Instruction Set Randomization
Threat Model:

Attack Techniques Mitigated: Code Injection

Details: This technique [91] protects against code injection into running binaries from all
vectors. It does not protect against return-oriented attacks and assumes that the operating system
is secure.

Description:

Details: Previous Instruction Set Randomization (ISR) techniques have two downsides that
make them very unappealing: slow execution due to the requirement for an emulator to run any
executable code and a weak encryption function, namely XOR. This scheme fixes the first problem
by using a very lightweight virtual machine for execution and the second by switching to Advanced
Encryption Standard (AES) for encryption. They use an existing VM called Strata [92] for their
ISR scheme, modified to allow for the necessary binary rewriting. When an executable is loaded
from disk, Strata encrypts it block by block using AES. During execution, each time the program
counter would point to an encrypted instruction, Strata decrypts the block that it is part of and
continues by calling the regular fetch instruction. Each instruction also comes with a tag that can
be verified so that after decryption, Strata can decide whether the code is legitimate or if it has been
injected. Any injected code could not match the tag, let along produce a valid, useful instruction
for the attacker since he does not know the encryption key used. To speed up execution, once the
blocks are decrypted they are kept in a cache for reuse. The encryption key is generated fresh for
every program execution and is kept by the VM so it cannot be read or altered by the program.

Entities Protected: All executables running on the Strata virtual machine.

Deployment: Can be deployed on any generic machine by adding an extra virtualization
layer.

Execution Overhead:

e Up to a 20% slowdown in execution.
Memory Overhead:

e Up to a 70% increase in executable size overhead and memory footprint.
Network Overhead:

e None

Hardware Cost:
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e None
Modification Costs:

] Data

O Source Code

O Compiler/Linker
X Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
[J Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[0 Access

X Exploit Development
X Attack Launch

O Persistence
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Interdependencies: Because of relying on a virtualization layer, this technique is really a stand-
alone technique that does not combine well with other OS-level defenses.

Weaknesses: AES is used in Electronic Codebook (ECB) mode that encrypts two identical blocks
to the same value. This means that an attacker could execute a replay attack by finding useful
encrypted instructions that exist in the executable and injecting them as shellcode. ECB is used
for efficiency reasons so that fewer decryptions are required. Additionally, the Strata VM itself
becomes a new point of attack since it holds all the keys and is in charge of readying instructions
for execution.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
[ Limit Movement

X Disable Movement

Impact on Attackers: Makes it difficult for an attacker to inject arbitrary code into an executable.
He or she would need to brute force the encryption key in order to forge instructions that would
decrypt to anything useful. More likely, the attack vector will shift to return-oriented programming
which is not mitigated with this technique.

Availability: No code publicly available.

Additional Considerations: The memory and execution overhead may become significant if all
applications are virtualized in this manner. A similar technique is proposed in [93,94].

Proposed Research: As with other techniques using encryption, this could benefit from hardware
AES instructions recently added to Intel processors.

Funding: Defense Advanced Research Projects Agency, National Science Foundation
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4.2.3 RANDSYS
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Address Space Randomization and Instruction Set Randomization
Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [95] defends against code injection and control injection from buffer
overflow attacks on the stack and heap. This method is only focused on remote machine-code
injection attacks. This method also assumes that the kernel is safe and it would not protect against
kernel-level code injection attacks.

Description:

Details: This is a hybrid Instruction Set Randomization (ISR) and Address Space Layout
Randomization (ASLR) technique. It uses subsets of techniques from each category along with
some additional guards to create a new implementation.

For ISR, it implements system call randomization between user space and kernel space (similar
to [96]). When a process is created, the exec system call is intercepted in the kernel and control is
given to RandSys. RandSys searches for all system calls in the application then takes their location
in memory and generates a new, random system call number using a secret key stored in kernel
space. This requires rewriting the system call dispatcher in the kernel to decrypt the system call
numbers at run-time.

For ASLR, it implements library re-mapping and function randomization. Library re-mapping
randomizes the library base addresses and reorganizes the internal functions. This makes it more
difficult to predict both the absolute and relative addresses. The import and export function
tables used by the dynamic linker are also randomized. The function randomization makes the
name lookup of each function unique to each process. Different randomization algorithms are used
depending on whether the function is being imported or exported. Due to this, a separate function
name resolver needs to be created to tie the imported and exported function names back together
at run-time.

Additional protections are also implemented with RandSys. Decoy entries are placed in the
function import and export tables. Each decoy points to a guard page which will cause an access
violation exception if there is an attempt to read, write, or execute it. RandSys also implements
a method for dynamic injection detection. A code page with injected shell code will have two
properties that can be detected: it will be writable and it will not be mapped from the executable
file. Whenever a system call or library function is invoked, a recursive stack-based inspection
algorithm can determine if any of those code pages exist. It hooks into the exception handler and
watches for such exceptions. It will attempt to terminate any program that has such an exception.

Entities Protected: All programs running on a machine utilizing this technique.

Deployment: Can be deployed on any generic machine by modifying its operating system.
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Execution Overhead:

e Increased system call overhead (difficult to estimate but could increase execution overhead
by up to 20%).

e Additional overhead introduced by one-time disassembly/analysis of each executable, up to
several minutes per executable.

Memory Overhead:
e None
Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

U Data

[ Source Code

O Compiler/Linker
X Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)

Expertise Required to Operate:
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X Seamless
J Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

0 Access

X Exploit Development
X Attack Launch

O Persistence

Interdependencies: The ASLR implemented by RandSys cannot be combined with another
ASLR implementation, so one has to be selected. Also it is desired to combine a solution like
RandSys with a ROP protection technique.

Weaknesses: This defense can be circumvented with a return-oriented programming attack that
can find the location of the randomized libraries (through an independent leakage attack, other
violation of memory secrecy or brute force).

Types of Weaknesses:

X Overcome Movement
X Predict Movement
[0 Limit Movement

O Disable Movement

Impact on Attackers: Makes it difficult for an attacker to inject code into a running program
and increases the level of effort required to redirect program control to a chosen location.

Availability: This implementation has been prototyped for both Windows and Linux but there
is not a publicly available version of it.

Additional Considerations: This technique breaks self-modifying codes. It also requires an
additional disassembly step for each application.

Proposed Research: RandSys mainly protects system calls. An extension to RandSys that
protects other library calls is an open problem (See [97]). In addition, this type of protection does
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not prevent ROP attacks. A complete protection against typical code injection and ROP attacks
is an open problem.

Funding: National Science Foundation, Microsoft Research
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4.2.4 RANDOMIZED INSTRUCTION SET EMULATION (RISE)
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Instruction Set Randomization
Threat Model:

Attack Techniques Mitigated: Code Injection

Details: This method [98,99] is targeted at stopping external binary code injection into an
executing program. The keys used for randomization are stored in the same memory space as
the running process so it relies on the assumption that the process memory cannot be read by an
attacker.

Description:

Details: RISE is a software-based ISR technique built on top of the open source Valgrind
[A32-t0-IA32 binary translator. It scrambles the instruction set at load-time and descrambles them
at run-time. It runs in user-space and does not require any modification of the operating system
or program being run because it is running inside an emulator. It can be run on a per-program
basis so it does not interfere with programs like compilers. RISE scrambles all executable portions
of a process, including libraries, by XOR-ing each byte of the process’ code with a randomization
mask. RISE has two methods of randomization. The first method is a tiled method that involves
generating a random mask with two or more pages before execution and XOR-ing each byte in
the code with a byte in the mask. The mask is read from /dev/urandom and is stored in a fixed
location right before the executable. The second method uses a one-time pad by using a unique
mask for each code page. The masks are not generated until the page is first accessed.

In both cases, any code that is injected into the program will be decrypted using the masks
and likely result in an invalid execution. For an attacker to circumvent this, he or she would have
to be able to generate a code segment that decrypts correctly into another one with his or her
desired behavior. Ideally, this can only be done if the attacker discovers the encryption keys.

Entities Protected: Any program running inside the RISE emulator.

Deployment: This technique can be deployed on any generic machine by adding an emula-
tor.

Execution Overhead:

e Additional 5% increase in overhead on top of Valgrind overhead

e Valgrind adds a minimum of 400% overhead per the documentation
Memory Overhead:

e Each process creates a private copy of all loaded libraries in virtual memory

e The One Time Pad randomization doubles the amount of memory needed for the code
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Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

O Compiler/Linker
[J Operating System
[0 Hardware

O Infrastructure

(No modification required)

Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

0 Seamless
X Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

O Reconnaissance
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O Access
X Exploit Development
X Attack Launch

[ Persistence

Interdependencies: RISE relies on a emulation layer (Valgrind). If this is to be used for all of
the applications, the overhead will be significant.

Weaknesses: This framework does not protect against attacks that target functions or pointers,
including return-oriented programming attacks. Additionally, an attacker that can violate memory
secrecy could read the key directly from memory or recover an encrypted code segment that, along
with the unencrypted segment obtained from the original executable, can be used to deduce the
key.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: This technique makes it difficult for an attacker to inject viable shellcode
into an application running inside the RISE emulator, without having an independent vulnerability
that can violate memory secrecy.

Availability: Prototype available under GPL at http://cs.unm.edu/~immsec

Additional Considerations: The large overhead introduced by the emulation layer can make
RISE impractical for real-world applications. See [100] for a discussion of performance issues.

Proposed Research: Similar to the function pointer encryption technique above, RISE could
benefit from the hardware level AES instruction providing an encryption scheme resistant to the
known plaintext attack outlined above.

Funding: National Science Foundation, Office of Naval Research, DARPA, Sandia National Lab-
oratories, Hewlett-Packard, Microsoft Research, Intel Corporation
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4.2.5 SQLRAND
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Instruction Set Randomization
Threat Model:

Attack Techniques Mitigated: Code Injection

Details: SQLRand [101] aims to protect against Structured Query Language (SQL) injection
attacks in situations where the query depends partially on untrusted input.

Description:

Details: SQLRand is a system for randomizing the SQL query language to prevent SQL
injection attacks. The creators note that injection attacks on SQL can be thought of similarly to
buffer-overflow-based code injection attacks. Their methods for SQL are based on similar methods
in RISE for such attacks. The SQL language is randomized so that any code that was injected will
not run (it will not match the new randomized language). A base SQL query (without runtime
criteria derived from user input) is sent to a proxy server to be randomized and returned. The
randomization is done by appending a chosen integer to the end of every keyword in the SQL
language. When the query is executed, it is again sent to the proxy that derandomizes it and
passes it on to the database server. Any code that was injected into the query by the user will not
match the new randomized language and will cause the query to fail.

Entities Protected: Any database application that uses the SQLRand proxy.

Deployment: Can be deployed on a network as a standalone proxy or on the machine that
runs the database software. Requiring use of the proxy to access the database would increase
security.

Execution Overhead:

e The randomization is relatively simple and very fast; experimental query response times were
increased by 6 milliseconds.

Memory Overhead:

e None
Network Overhead:

e Requires a proxy for all traffic going to the database server
Hardware Cost:

e Can be run on the same server as the database software, but could also be run as an inde-
pendent server for increased speed
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Modification Costs:

0O Data

O Source Code

O Compiler/Linker
[0 Operating System
[0 Hardware

O Infrastructure

(No modification required)

Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

U Seamless
X Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

[ Reconnaissance

O Access

X Exploit Development
X Attack Launch

O Persistence

Interdependencies: None
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Weaknesses: If the randomized SQL query is ever leaked or accessed by the attacker then he
or she can produce valid injection code. This is very common with web applications that often
report the query used upon failure. Developers would have to be very sure that error messages
were sanitized and no other paths for query leakage were introduced. However, since most SQL
injection attacks start by discovering a query (otherwise the attacker would have no knowledge of
the database structure), this seems like a very large weakness.

Types of Weaknesses:

O Overcome Movement
X Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: Increases the level of effort for SQL injection attacks by making it more
difficult for attackers to generate valid injection code. It requires them to either brute force the
random key or find a way to leak an existing randomized query.

Availability: No code is publicly available.

Additional Considerations: This approach requires every use of a SQL query to be rewritten
(in the source code) with this randomization in mind. In particular, the developer must identify
the parts of the query that will always remain the same and the parts that are based on user input.
Since the vast majority of SQL injection attacks occur because the developer did not take the time
to do this in the first place (if he or she did there is already a method for sanitizing inputs using
the prepare command), this seems like a wasted effort. Moreover, the scope of the protection is
also very limited.

Proposed Research: There are existing, effective techniques to stop SQL injection attacks. No
research is proposed.

Funding: Unknown
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4.2.6 CIAS
Defense Category: Dynamic Runtime Environment
Defense Subcategory: Instruction Set Randomization
Threat Model:

Attack Techniques Mitigated: Code Injection

Details: This technique [102] protects against the injection of code into an application with
a buffer-overflow vulnerability. This technique is only effective against injected code that requires
the use of system calls.

Description:

Details: First, the compiler is modified so that each system-call number is changed from x to
f(r,x) where f is a random permutation that takes r as an input seed. In practice, they use XOR
as f. This means that every system call number is replaced by a randomly chosen pseudonym. Any
code that is injected will not know this mapping and thus cannot produce shellcode that invokes
the correct system call. The kernel system call dispatch is changed so that it knows f and r and
can derandomize the input number to the correct system call number.

Entities Protected: Any programs recompiled using the modified compiler, on a system
that includes the kernel derandomizer.

Deployment: Can be deployed on any generic machine by modifying the operating system.

Execution Overhead:

e The kernel must derandomize system call numbers, but system call dispatch already takes a
significant amount of time and one additional XOR does not have significant impact.

Memory Overhead:
e None
Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

O Data
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0 Source Code

X Compiler/Linker
X Operating System
0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

[J Seamless
O Simple Configuration
X Complex Configuration (System Admin)

0O Expert Operator
Kill-Chain Phases:

J Reconnaissance
0 Access
X Exploit Development

X Attack Launch

0 Persistence

Interdependencies: Could be combined with ASLR to increase protection.

Weaknesses: The system-call table is not very large so the amount of randomness introduced is
small (can be as low as 8 bits). Additionally, if a randomized binary is leaked then an attacker
can compare that to a regular binary and discover the key, gaining the ability to forge system call
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numbers. Also, this does not protect against return-oriented attacks because the system calls in
libc will already be correctly randomized.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
[ Limit Movement

O Disable Movement

Impact on Attackers: Increases the effort required to inject the desired code successfully.

Availability: No code publicly available, but the concept is relatively simple and would not require
many code changes.

Additional Considerations: None

Proposed Research: As with other techniques that use XOR as an encryption function, this
could possibly benefit from hardware AES. This may be a better research opportunity because
system calls happen relatively infrequently (compared to pointer dereferences) and already require
a shift to kernel space. This means that any performance degradation will be well hidden and the
problem of storing keys is dealt with because they can be securely stored in kernel space. However,
this solution is a partial solution to a bigger problem. A proper memory protection against regular
code injection and ROP is required.

Funding: National Natural Science Foundation (China), Beijing Science Foundation, Nation 868
High-tech Program of China, MOE Key Laboratory of Data Engineering and Knowledge Engineer-
ing
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5. DYNAMIC PLATFORMS

5.1 SECURITY AGILITY TOOLKIT
Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Exploitation of Trust

Details: This technique [103] helps mitigate the damage that can be done on a system by
restricting the access an application or process currently holds in the event of attack detection. It
can restrict high-level access like read /write permissions to a file as well as low-level access such as
system calls. It also has the ability to restrict external connections.

Description:

Details: This technique provides a toolkit to wrap around executables. It allows the injection
of greater access control mechanisms with the ability to change them during program runtime. The
toolkit is meant to supplement general intrusion detection system (IDS) frameworks. The idea is
that if a detection of a certain threat or activity is encountered, the dynamic security policy of
the affected applications can be dynamically changed. It could increase auditing, isolate affected
processes, or even take measures like killing certain programs. There is an Agility Authority on
each host that manages the agile processes for that host. Above that, an Agility Authority Manager
distributes policy updates to each Agility Authority. The IDS can either send response directives
directly to each Agility Authority or to the Agility Authority Manager. After a response directive
is received, the policy is adjusted accordingly and actions are taken according to those new policies
to mitigate the threat.

Entities Protected: This technique protects the operating system when suspicious activity
or threats are detected.

Deployment: This technique could be implemented into the operating system at the kernel
level to enable functionality to wrap around existing executables.

Execution Overhead:

e Will incur some unknown overhead while checking for policy updates and applying policy
checks

Memory Overhead:
e Will incur some unknown overhead by injecting the policy code into the running program
Network Overhead:

e None
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Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

O Compiler/Linker
X Operating System
U Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

[0 Seamless
O Simple Configuration
X Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

[0 Reconnaissance

[0 Access

X Exploit Development
O Attack Launch
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X Persistence

Interdependencies: This technique relies on a framework that includes intrusion detection sys-
tems, event analyzers, and response units to trigger policy changes. If the attack cannot be detected,
this framework does not work.

Weaknesses: A potential weakness is the reliance on a separate detection mechanism. A stealthy
attacker could avoid detection and carry out their attack without extra hindrance. An attacker
could also potentially use the policies to cause a denial of service to the system by intentionally
triggering the strict policies. This technique does not provide any protection against the first attack.
It can only adjust the policy afterward.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
O Limit Movement

X Disable Movement

Impact on Attackers: Depending on how this was implemented, it may have some impact on
the attackers. If the policies were implemented in a strict fashion as the starting policy, it could
limit what the attacker could do to a system after compromising an application. If the attacker is
detected, it could make it more difficult accomplish their task if they had not completed it before
being detected.

Availability: This technique was prototyped by the authors but is not publicly released.

Additional Considerations: This work lacks many specifics. The technique relies on an exter-
nal detection mechanism so the effectiveness of this technique relies on the effectiveness of that
mechanism. Since there is no perfect detection mechanism, this could significantly decrease the
effectiveness of this technique. Also the technique does not provide any protection against the
first attack. It only relies on limiting damage afterwards. Moreover, policy changes can break
applications and functionality.

Proposed Research: A possible future direction for this technique would be to make it more
integrated with a detection mechanism. This would make the technique less reliant on external
triggering mechanisms. Combining this technique with other movement techniques would increase
the overall effectiveness of this method. If other techniques or guards are able to detect more
specific types of attacks, that could be implemented as another triggering source for this technique.
It is also crucial to understand the impact of policy changes and their effectiveness in stopping an
attack.

Funding: DARPA
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5.2 GENESIS
Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [104] defends against different threats depending on how it is im-
plemented. If it is implemented with Instruction Set Randomization, it can defend against code-
injection attacks. If it is implemented with Calling Sequence Diversity, it can partially mitigate
attacks that divert the control flow of a program. It can protect against attacks that target func-
tion calls that exist before the program is loaded but not function calls that are generated during
runtime.

Description:

Details: This technique involves applying runtime software transformations to a program.
The program is run in an application-level virtual machine called Strata. Strata with software
dynamic translation can change a program by injecting new code, modifying existing code, or con-
trolling program execution in some manner. Strata examines and translates all program instructions
before they execute on the host processor. Two transformation methods were prototyped to test
this technique.

The first method involves Calling Sequence Diversity (CSD). The method involves modifying
the compiler to insert annotations into the code whenever there is a static control flow switch. It
will XOR three keys each time this switch is made and will be compared to an expected key to
verify it was a valid switch. The first key is generated at load time and is not accessible by or
stored in the running program. The second and third keys are the source and destination keys. If
an unexpected jump or control flow diversion is interested, Strata will dynamically generate the
key check.

The second method involves modifying the linker to allow Strata to use Instruction Set Ran-
domization (ISR). This method uses 128-bit AES encryption instead of XOR. The linker marks all
application and library code as encryptable, appends a tag to each instruction, and adds padding
as necessary to properly align the blocks for AES encryption. Strata will encrypt the application
when it loads and decrypts the instructions as they are needed for execution. It will then check
the instructions for the proper tag. If the instruction is valid, it will remove the tag and add it to
a cache to decrease decryption costs.

Entities Protected: This technique helps protect the operating system by making applica-
tions more difficult to exploit.

Deployment: The Strata VM is deployed as a standalone application on the system and
does not require modifying the operating system. In order to use the methods of diversity discussed
in the paper, the compiler and linker on the system would also need to be modified to support each
diversification method.
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Execution Overhead:

e The ISR method adds about a 17% increase in overhead against the SPEC CPU2000 Bench-
marks

e The CSD method adds an average 54% increase in overhead against the SPEC CPU2000
Benchmarks

e The emulation layer (Strata) can impose significant execution overhead
Memory Overhead:

e Some additional memory will be required for the Strata VM and any keys or instructions it
needs to store

Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

0 Data

O Source Code

X Compiler/Linker
0 Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
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Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

0 Reconnaissance

O Access

X Exploit Development
[0 Attack Launch

[ Persistence

Interdependencies: This technique relies on an emulation layer (Strata).

Weaknesses: This technique relies on the security and integrity of the VM. It assumes there is
no way for an attacker to disable protections on the VM’s memory sections and the VM imple-
mentation is sufficiently bug-free. The authors claim to protect the system calls that could disable
these protections but a method may exist to disable those protections indirectly. In addition, this
technique does not provide any protection against ROP attacks. This technique is also weak against
memory secrecy violations.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
[ Limit Movement

X Disable Movement

Impact on Attackers: Both methods used in this technique will increase the amount of work
needed to exploit the application. In both cases, more advanced control injection attacks, such as
return-oriented programming, could be used to bypass these protections.

Availability: This technique was prototyped by the authors but is not publicly released.
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Additional Considerations: The ISR method breaks self-modifying code and just-in-time com-
pilers (e.g., Java). Running every application on top of an emulation layer can have significant
execution overhead, which makes this technique impractical.

Proposed Research: A future research direction for this technique might be investigating meth-
ods to increase the protection provided by the CSD method. A larger direction might be combining
this technique with an N-version programming technique. This would increase the overall difficulty
in exploiting the application because now the attacker has to break multiple diversifications with
one input. An efficient protection against code injection and ROP is an open problem.

Funding: DARPA
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5.3 MULTIVARIANT EXECUTION
Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection

Details: This technique [105] combats code-injection attacks by having each running variant
use a different system call mapping and unpredictable stack direction. Each variant uses the same
input making it difficult to inject code that will work with all mappings simultaneously. The stack
direction change will result in a different flow of instructions in the program and libraries as well
as providing different library entry points between the variants.

Description:

Details: This technique involves running multiple variations of the same program. A separate
monitoring program monitors all variations. The level of monitoring can vary from each program
having the same result down to checking each instruction executed. This technique focuses on
synchronizing all variants at the system call level and each variant should make the exact same
system calls. If any inconsistency is detected, all variants are terminated and restarted. The monitor
is implemented as a user-space, unprivileged program. It monitors the arguments of system calls
and all communication between the variants as well as interactions with the kernel. There are
some system calls that must be executed by the monitor on behalf of the variants to keep them
synchronized. These would include system calls that change the state of the system or return
volatile results. In this case, the results of the system call are passed to the variants. Variants are
automatically generated by modifying the stack growth direction and system call number mapping
but the technique is capable of any variation technique as long as the system call invocations are
the same.

Entities Protected: This technique protects the operating system by making the exploita-
tion of an application more difficult.

Deployment: The monitor and variants are implemented as standalone applications run-
ning on a system. The variants are generated by using a modified compiler and modified system
libraries.

Execution Overhead:

e Number of variants + Monitor overhead

Additional time added for variant synchronization and communications
e Average monitor overhead of 17% with two variants
e Average monitor overhead of 30% with three variants

e Average monitor overhead of 37% with four variants
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Memory Overhead:
e Number of variants + Monitor overhead
Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

0 Data

O Source Code

X Compiler/Linker
X Operating System
[ Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

[J Seamless
X Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
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Kill-Chain Phases:

[J Reconnaissance
0 Access
X Exploit Development

X Attack Launch

[ Persistence

Interdependencies: This technique requires a good source of randomness for the system call
number randomization. This technique will not work with variants that cause a program to produce
differing sequences of system calls.

Weaknesses: The actual dependency of attacks on the variants is unknown. This technique does
not stop attacks against higher-level protocols. The multivariant monitor can be compromised
specifically as it is in the “untrusted” zone. For example, the monitor can falsely indicate that the
variants agree on a result. In addition, this technique is focused on integrity attacks and it does
not protect against data leakage (exfiltration) attacks against one of the variants. The granularity
of detection is also limited to system calls. Modifications to the user space code that keeps system
calls intact remain undetected.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

X Disable Movement

Impact on Attackers: This technique increases the difficulty of exploiting an application. It
requires the attacker to provide input to a program that will simultaneously break all running vari-
ants. The impact will be different depending on the diversification method used on the variants.
Some diversification techniques include stack reversal, instruction set randomization, heap layout
randomization, stack base randomization, variable reordering, system call number randomization,
register randomization, library entry point randomization, stack frame padding, code sequence
randomization, equivalent instructions, program base address randomization, program section re-
ordering and program function reordering.

Availability: This technique was prototyped by the authors but is not publicly released.

Additional Considerations: The technique has significant overhead as it requires many variants.
It, however, does not protect against the compromise of one variant. The actual impact of diversity
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on the attacks is unknown. This technique also lacks many important specifics (types of diversity
applied and its impact).

Proposed Research: It may be possible to compose some techniques while still preserving the
required properties of this technique. It would be worthwhile to explore which methods can be
composed together in a manner that does not cause unintentional divergences or false detections.
More specifics are needed for a technique like this.

Funding: Air Force Research Laboratory
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5.4 DIVERSITY THROUGH MACHINE DESCRIPTIONS
Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection

Details: This technique [106] is meant to mitigate mass code injection attacks. Each sys-
tem would potentially need their own custom exploit to work because of all the varying system
modifications and configurations.

Description:

Details: This technique involves using a virtual machine and compiler machine descriptions
to create a diverse set of architectures. This will regenerate all the machine-dependent and archi-
tecture dependent parts of a complete operating system. Various items can be changed in these
machine descriptions including the following:

o different size of operations with different instruction sets and instruction encoding

e different number of registers

different machine byte and word sizes

different endiannesses

different representation of signed integers

different stack directions

e using one or multiple stacks

different calling conventions such as alignment, ordering, padding, registerization, stack ad-
justment, and return value handing

e alignment padding in stack frames and data structures

The kernel would be able to have changes such as different sizes of standard types and linker
relocation codes. These machine descriptions could be randomly generated. These architectures
could be periodically applied to one machine or across many machines.

Entities Protected: This technique protects the operating system as a whole.

Deployment: This technique is deployed inside of a VM and is composed of an entire
system.

Execution Overhead:
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e Some overhead imposed by running inside a virtual machine
Memory Overhead:
e None
Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

1 Data

O Source Code

X Compiler/Linker
X Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
J Simple Configuration

O Complex Configuration (System Admin)
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O Expert Operator
Kill-Chain Phases:

O Reconnaissance
O Access
O Exploit Development

X Attack Launch

[ Persistence

Interdependencies: This technique relies on a virtualization layer. It also require a diversification
layer to create the variants.

Weaknesses: The technique does not protect against application-level attacks. It does not protect
against ROP attacks either. The virtualization layer is also a single point of failure and can be
attacked. In addition, the technique does not provide any protection against targeted attacks on
one platform.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

X Disable Movement

Impact on Attackers: This technique would increase the amount of work an attacker would
have to do to attack a large number of systems. An attacker may still be able to leverage non-code
injection attacks against these systems that work across multiple architectures.

Availability: This is a research idea proposed by the author and has not been implemented.

Additional Considerations: This technique is theoretical and lacks many specifics. Constant
recompilation of the entire operating system could impose a large operational overhead In addi-
tion, changing so many aspects of a system could potentially have unforeseen adverse effects on
applications and can break functionality. Implementing this technique can be very difficult. See a
discussion on diversity in [107,108].

Proposed Research: A possible research direction for this technique might be coming up with a
way to better automate this process. It may also be worthwhile to investigate potential side effects
of changing so many parts of the architecture. This idea might be able to be expanded to mix in
different versions of libraries and base operating systems as well.
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If a technique like this could be reasonably automated (see [109]) and any side effects of archi-
tecture randomization explored, a larger future direction could be combining this with a technique
like TALENT. This would allow for a large space of platforms to be dynamically generated or
periodically regenerated.

The impact of different types of diversity on attacks has to be studied.
Funding: Unknown
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5.5 N-VARIANT SYSTEMS
Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [110] can be implemented with different application variants to
target specific threats. The instruction set tagging variant gives each running variant their own
instruction set. Since each variant is passed the same input, this will help mitigate code injection
attacks because the attack might succeed on one variant but would presumably fail on another.
The monitor would catch this divergence and restart the variants. Address-space partitioning is
the second type of variant used in this technique. This variant will help mitigate control-injection
attacks because each variant is mapped to a separate location in memory. This will only help
mitigate control flow attacks that rely on fixed addresses. Attacks that know the relative location
of their target can still succeed.

Description:

Details: The idea behind this technique is to run multiple variants of the same application
simultaneously without relying on anything to be secret. It contains a polygrapher, the application
variants, and the monitor. The polygrapher takes input and passes it to all the variants. The
monitor watches the variants for a divergence and, if one occurs, restarts all the variants in a
known good state.

This technique relies on a couple properties to work correctly. The first property is a normal
equivalence that says when a variant is in a normal state, that state should be equivalent to a
state in the unmodified, original process. The second property is a detection property that says
certain attacks should be detected as long as the normal equivalence is satisfied. If a variant enters
a compromised state, then another variant should enter an alarm state or anomalous state that is
detectable by the monitor.

The proof-of-concept was built into the Linux kernel and tested with two types of variants.
The monitor synchronizes the variants at the system-call level. System-call wrappers are created so
system calls can be shared between variants. System calls are broken into three categories: shared,
reflective, and dangerous. Shared system calls interact with external state, reflective system calls
observe or modify properties of a process, and dangerous system calls can break the assumptions
of the technique.

The first variant tested was the address space partitioning. This utilizes the linker to load the
data and code sections of the program at sufficiently different addresses while ensuring they will not
overlap. The second variant tested was instruction set tagging. This utilizes a binary rewriter to
insert a tag into each instruction and software dynamic translators to interpret these instructions
during execution. Each variant would use different tags.
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Entities Protected: This technique protects the operating system by making the exploita-
tion of an application more difficult.

Deployment: This technique is built into the operating system and wrappers are created
for some system calls.

Execution Overhead:

e N times slow down for N variants plus additional overheads as follows:

— 2 Variants with Address Partitioning: Unsaturated Server: 17.6% Increase, Saturated
Server: 48% Increase

— 2 Variants with Instruction Tagging: Unsaturated Server: 28% Increase, Saturated
Server: 37% Increase

e CPU-bound services will have a high overhead because each variant will duplicate computa-
tions

Memory Overhead:
e Number of variants + Monitor 4+ Polygrapher Overhead
Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

U Data

O Source Code

O Compiler/Linker
X Operating System
[0 Hardware

O Infrastructure

Expertise Required to Implement:
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O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
J Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

[0 Reconnaissance
[J Access
X Exploit Development
O Attack Launch
O Persistence
Interdependencies: This technique can only be used with diversification techniques that use

variants similar enough to satisfy the normal equivalence property. It also relies on separate diver-
sification techniques.

Weaknesses: This technique does not protect against application level attacks. Also the monitor
can be a single point of failure. In addition, the technique does not provide any protection against
ROP attacks and memory secrecy violations. It does not provide any protection against data
leakage attacks on one variant either.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
O Limit Movement

O Disable Movement
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Impact on Attackers: This technique increases the difficulty of exploiting an application. It
requires the attacker to provide input to a program that will simultaneously break all running
variants. The impact will be different depending on the diversification method used on the variants.

Availability: This technique has been implemented by the authors and is available at
http: //www.nvariant.org

Additional Considerations: The technique lacks many specifics and the actual diversification
techniques and their impacts are unknown. Also the technique kills programs that use the execve
(execute program) or unrestricted mmap (map file into memory) system calls. Operating System
Signals may cause the variants to diverge because variants might be in slightly different states
when they receive the signal (this restricts the functionality of the technique). Variants using user-
level threading may cause false detections because of the difference in thread interleaving causing
different sequences of system calls. This could also potentially allow an attacker to exploit race
conditions. Various non-attack inputs can cause false detections making this prototype less feasible
for real services. In addition, running many variants may be impractical.

Proposed Research: A future direction for this technique would be to explore additional variant-
diversification methods. This technique could also be enhanced to work with more system calls and
operating system components like other similar techniques. The impact of diversification techniques
on attacks must also be studied.

On a larger scale, it may also be possible to compose some techniques while still preserving
the required properties of this technique. It would be worthwhile to explore the space of diversifi-
cation methods and determining which methods can be composed together in a manner that does
not cause unintentional divergences or false detections. Some diversification techniques include
stack reversal, instruction set randomization, heap layout randomization, stack base randomiza-
tion, variable reordering, system call number randomization, register randomization, library entry
point randomization, stack frame padding, code sequence randomization, equivalent instructions,
program base-address randomization, program-section reordering, and program-function reorder-
ing.

Funding: DARPA, National Science Foundation
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5.6 TALENT

Defense Category: Dynamic Platforms
Defense Subcategory: None

Threat Model:

Attack Techniques Mitigated: Code Injection, Control Injection, Scanning, and Supply
Chain

Details: This technique [111] can help mitigate OS- and architecture-dependent attacks.
Since the application is migrating between systems with different libraries, architectures, and lay-
outs, it is more difficult to construct exploits that will work under every platform. The attacker
also may not be able to predict when the application will migrate or which platform the application
is currently running on. The fact that the application can be constantly moving makes passively
scanning and collecting information less useful. Changing hardware platforms also makes supply
chain attacks more difficult.

Description:

Details: The Trusted dynAmic Logical hEterogeNeity sysTem (TALENT) is a technique
that involves making a running application migrate between different platforms (OS and CPU
architecture) while preserving the state of that application. This state can include any files the
program was using or sockets the program had open. These platforms have hosts with virtual con-
tainers. Each can be implemented with a different operating system, different hardware, a different
architecture, and different versions of libraries. The application being preserved is precompiled for
each platform. TALENT needs compiler support to create checkpoints and containers to preserve
the environment.

The current implementation uses Linux and BSD platforms. A centralized controller manages
the migrations. The migrations can currently trigger at random intervals or via manual interaction.

Entities Protected: This technique protects the operating system and applications running
on it by continually shifting the attack surface

Deployment: This technique is deployed across multiple systems. A special compiler allows
a program to be periodically checkpointed. The source code of the program needs to be modified
to be able to support the checkpointing.

Execution Overhead:

e Minimal overhead imposed by the checkpointing mechanism

e A few seconds of downtime during migration
Memory Overhead:

e None
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Network Overhead:

e The state of the programs will be transferred between machines

e Control messages passed between the platforms
Hardware Cost:

e A system capable of a virtual infrastructure or additional machines to host each platform
Modification Costs:

O Data

X Source Code

O Compiler/Linker
X Operating System
U Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

O Seamless
X Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

X Reconnaissance
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O Access
X Exploit Development
O Attack Launch

O Persistence

Interdependencies: This technique relies on a detection mechanism for effective jumping if it is
not using a random jumping scheme.

Weaknesses: There are a couple ways this technique could be less effective. If the platforms do
not migrate fast enough, the attacker may be able to get an exploit together and attack the current
machine. The technique does not provide any protection against higher-level protocol attacks. It
also does not protect against attacks on one machine.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
X Limit Movement

0 Disable Movement

Impact on Attackers: This technique would slow down an attack and make it more difficult for
them to exploit the machines but it would not stop them completely. An attacker still has the
chance of exploiting a system and achieving their goal before the application migrates. An attacker
could also try to leverage more advanced Control Injection attacks that could work across numerous
Systems.

Availability: This technique has been prototyped by the authors and is available as a GOTS
product.

Additional Considerations: Using this technique on every application can impose a very high
overhead. It must be used to protect only selected set of important applications.

Proposed Research: There are a number of future directions this technique could investigate.
One direction would be implementing a recovery mechanism. This would allow the technique to
clean up and recover from attacks. Another future direction would be adding data integrity checks.
Currently the technique has no integrity guarantees. Finally, another direction would be creating
a distributed command and control mechanism to eliminate the single point of failure.

A possible direction in the future may be able to combine this technique with a cloud concept
to have a large and dynamic set of platforms to choose from at all times. This would make it less
predictable which platforms would be in the migration sequence.

The impact of OS and architecture diversity on attacks must also be studied.

Funding: Air Force
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5.7 INTRUSION TOLERANCE FOR MISSION-CRITICAL SERVICES

Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:

Attack Techniques Mitigated: Resource

Details: This technique [112] combats resource attacks such as denial of service (DOS) and
data integrity attacks. It mitigates the impact of DOS attacks by trying to ensure there are enough
resources on a platform to run the service. It will terminate non-critical services to free up resources.
If not enough resources can be freed, it will change to a different platform. This technique mitigates
data-integrity attacks by implementing a voting scheme for the service results.

Description:

Details: This technique aims to make critical web services more survivable in the face of
attack. This is composed of a frontend that accepts requests from clients, some number of diverse
platforms serving the same service, and a surveillance node that monitors the platforms and deals
with voting. The platforms can have different operating systems and different web servers to vary
their attack surface.

Fach platform implements a resource reallocation method that monitors the system. It is
composed of a resource-reallocation manager, health-monitor thread and survivability-evaluation
thread. The health monitor collects performance information from the operating system and for-
wards that information to the survivability thread. This thread determines if resources need to be
changed based on the performance. If resources need to be adjusted, the resource manager will
start to terminate non-critical services to free up additional resources. If not enough resources can
be freed to ensure acceptable performance, the platform is taken offline for recovery.

Each platform also has a result acceptance tester. This component tests the logical reason-
ableness of the result and the execution time required to obtain that result. The platforms can
operate in two modes. There is an active mode where a set of active nodes process a request
simultaneously and the result is voted on and processed by the surveillance node. There is also a
passive mode where only one platform is active. If that platform does not pass the acceptance test,
it is replaced by another platform and recovery is performed on it.

Entities Protected: This technique protects specific applications and services to ensure
they continue to operate under attack.

Deployment: This technique would be deployed in the overall network infrastructure.

Execution Overhead:
e Up to an additional 50% time may be needed to process a request

Memory Overhead:
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e None
Network Overhead:

e Additional out-of-band network needed for surveillance
Hardware Cost:

e Additional platforms to host the additional variants

e Additional network infrastructure to support this platform configuration
Modification Costs:

O Data

O Source Code

O Compiler/Linker
[0 Operating System
00 Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

O Seamless
X Simple Configuration
O Complex Configuration (System Admin)

[J Expert Operator

Kill-Chain Phases:
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[ Reconnaissance

O Access

X Exploit Development
O Attack Launch

X Persistence

Interdependencies: The system relies on a detection capability that monitors the resources.

Weaknesses: This technique assumes that only one active platform will be compromised at any
given execution cycle. The voting mechanism would see this as a valid result and it could compro-
mise the integrity of this technique. Also this technique does not stop any attack. It just tries to
mitigate DoS attacks by resource management. In addition, data-leakage attacks or low-observable
attacks are not mitigated.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
X Limit Movement

X Disable Movement

Impact on Attackers: This technique would make it more difficult for an attacker that is trying
to deny service. This technique might not slow down an attacker with a different goal. An attacker
could still carry out other attacks that take advantage of the voting system or exploit the system
at a lower level.

Availability: This technique was prototyped by the authors but is not publicly available.

Additional Considerations: This technique provides no additional protection. It just mitigates
the impact of certain types of attacks. Also the technique lacks specifics. For example, it is unclear
what types of resources are monitored. What happens to obscure resources that can run out (e.g.,
file descriptors or certain ID numbers)? A similar technique is proposed in [113].

Proposed Research: A possible enhancement to this technique would be to make the voting
system more difficult to bypass. Currently, only two results need to match for a result to be
accepted. This could be expanded to more systems.

A larger direction for this technique would be to combine this technique with other movement
techniques on the platforms. This would increase the diversity between each platform and make
the platforms resistant to a larger set of attacks.

Also a study must be conducted to enumerate all possible resources that can be attacked in
a machine during a DoS attack.
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Funding: University [T Research Center Project, University of Incheon, Korea Information Secu-
rity Agency Research Project
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5.8 GENERIC INTRUSION-TOLERANT ARCHITECTURES FOR WEB SERVERS
Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection, Control Injection, and Scanning

Details: This technique [114] helps reduce the attack surface [9] of the services by not making
them directly accessible from the outside, limiting the types of traffic that can reach it, and running
on multiple diverse systems. Each request can use a different subset of diversified servers and the
results are voted on making it more difficult for one attack to be universal. The servers are also
hidden behind the firewall and proxies making information collection attacks more difficult as well.

Description:

Details: This technique aims to be a system capable of diagnosing issues, repairing itself,
and reconfiguring itself in order to continue to provide a service in the event of attack. It consists
of a firewall in the front that filters all traffic except http traffic. The traffic that gets through is
fed to a network of proxy servers. These proxy servers communicate with the web servers. Each
web server is a diversified system containing various architectures, operating systems, and software
packages while providing the same content. The proxy systems are diversified in a similar manner
but have been hardened to be further resistant to attack.

The proxy servers have the ability to take on differing roles. The proxy servers choose a
leader and this leader handles all requests from the firewall. It is responsible for determining which
subset of web servers should be used to process the client request. A different number of web
servers can be chosen to process the request based upon how critical the service is or the current
alert level of the system. It will also be responsible for making sure everything is load balanced so
some servers are not overworked. One of the proxy servers is also chosen as an adjudicator that
manages connections to the shared database if one is needed. It has the ability to filter out any
suspicious looking SQL queries. Each proxy is capable of taking on one of these roles if something
happens to the existing elected proxy. Each proxy also has an alert manager on it. Each proxy and
server can be in a trustworthy state, a suspected state, or a corrupted state. The alert managers
help decide what action should be taken in the event of an alert from any detection mechanism
(described later). When something receives an alert, a vote is taken amongst the proxies to verify
alert. An action is then taken depending on the role of the corrupted component. Each proxy is in
a different administration domain to prevent one administrator from taking over all proxies. The
leader proxy also has the ability to filter out any suspicious looking http requests.

This technique incorporates a number of different detection mechanisms. The first is an
agreement protocol. This is a voting mechanism to determine if a server was corrupted. Each
server processing the request sends a cryptographic hash of the response excluding the header back
to the current leader. The majority response is then used to be sent back to the client. The proxies
use this same voting protocol when an anomaly is detected in any of the systems to come to a
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consensus on a countermeasure. The adjudicator proxy uses this protocol to verify SQL queries
before executing them on the database as well.

The next detection mechanism used is a combination of network- and host-based intrusion-
detection systems. Host-based intrusion detection systems are placed on every host and a network-
based intrusion system is used to monitor the traffic between servers and proxies. Each web server
is rebooted periodically from a read-only trustworthy source.

In between each two reboots of a system, another detection mechanism is implemented. This
is a challenge-response protocol implemented by each proxy. A proxy can periodically send out a
challenge to any other proxy or server about a file on that system. The response is checked against
a precomputed response. There must be enough challenges generated to last between two reboots
of a system.

The final detection mechanism implemented is a runtime verification of the proxies. This
checks the behavior of each proxy during its execution. The system is modeled by a finite-state
machine and the state is monitored. There are different models depending on the current role of
the proxy. The proxy can both monitor its own behavior as well as the other proxies behavior.

Entities Protected: This technique is used to protect the availability and integrity of web
services.

Deployment: This technique would be deployed in the overall network architecture.

Execution Overhead:

e Duplex and triplex regimes have 200% and 300% overhead plus additional overheads as fol-
lows:

— For one server without database access and a 1 MB file, this added about a 31% overhead

— For three servers without databases access and a 1 MB file, this added about a 33%
overhead

e Database access time approximately doubled with this technique
Memory Overhead:

e None
Network Overhead:

e Additional network traffic generated by the additional servers
Hardware Cost:

e Additional platforms to host the additional variants
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e Additional network infrastructure to support this platform configuration
Modification Costs:

] Data

O Source Code

O Compiler/Linker
0 Operating System
] Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

0 Seamless
X Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

J Reconnaissance
O Access
X Exploit Development

O Attack Launch

O Persistence
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Interdependencies: A firewall able to effectively filter everything but HTTP traffic. The service
being provided should produce the same results under normal conditions on all systems. The
technique relies on a detection mechanism.

Weaknesses: An attacker could launch a large-scale attack that results in all the web servers
rebooting due to detections causing a denial of service. In addition, this technique provides no
protection against targeted attacks on one web server. Also, data leakage attacks are not protected.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
X Limit Movement

0 Disable Movement

Impact on Attackers: This technique could significantly increase the workload of the attacker.
The attacker would need to create an attack that would work on an unknown majority number of
diversified systems. An attacker may be able to leverage a script injection if it is not detected by
any of the detection mechanisms. The attacker also cannot directly access the servers making it
more difficult to do reconnaissance on those systems.

Availability: This technique was prototyped by the authors but is not publicly released.

Additional Considerations: The paper lacks specifics on the types of diversity or how that may
impact security. It could be prohibitively expensive at large scale. The technique only handles http
traffic. This method is limited and can only be applied to specific a system.

Proposed Research: One possible direction to look into would be to blacklist requests that
caused a server to go into a bad state. Future requests that are on the blacklist could be blocked at
the proxy. This would prevent a continuous denial of service attack using the same attack request
continually. It may also be possible to combine this technique with other movement methods on
the web servers. This could make them more resistant to a larger set of attacks and offer more
detection mechanisms.

Funding: SRI International, DARPA
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5.9 SCIT
Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [115-117] does not detect any attacks but assumes the system is
continually under attack. While this would not stop an attacker from injecting code, the minimal
exposure time before cleaning a system would require a fast-acting exploit. This would also stop
attackers from continuously persisting on these systems.

Description:

Details: The Self Cleansing Intrusion Tolerance (SCIT) technique aims to decrease the
exposure time of a system by rotating it with copies. The copies that are not being used are cleaned
and restored to a pristine state. Each system copy is implemented in a virtual environment. There
is a separate system with a network attached memory utility that stores persistent short-term
information or session data between the systems. The final component is a controller that manages
the rotation of the systems and how long each system copy is exposed. The systems can be in one
of four states. The first state is active where it is online and accepting/handling requests. The
second state is grace period where it stops accepting new requests and finishes processing existing
requests. The third state is inactive where it is taken offline to be restored. The final state is
liwe spare where the system has been restored and is ready to become active. There can be either
one active server at a time serving one service or multiple active servers serving multiple services.
The latter would require additional algorithms to determine which systems could be easily brought
down next. The systems are rotated on the order of minutes. The systems are on their own private
virtual network and are not directly accessible from the internet. Connections to the systems are
managed by a load balancing system.

Entities Protected: This technique protects servers by limiting their exposure time.
Deployment: This is a contained virtual environment and could be deployed on the servers.

Execution Overhead:

e Some unknown overhead due to virtualization

e Significant overhead for cleaning the VMs
Memory Overhead:
e None

Network Overhead:
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e None — Self-contained virtual network
Hardware Cost:

e Additional hardware to support a virtualized environment
Modification Costs:

O Data

0 Source Code

O Compiler/Linker
[J Operating System
X Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

0 Seamless
0 Simple Configuration
X Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

0 Reconnaissance
O Access

0 Exploit Development
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O Attack Launch

X Persistence

Interdependencies: The technique requires a virtualization infrastructure in place. It also re-
quires an automated re-imaging capability.

Weaknesses: The networked memory does not have any protection or integrity control. Since it
is accessible via all systems, an attacker could attempt to quickly corrupt or change the contents
of this storage. Another weakness is that every system is the same. If the attacker can find a
working exploit against one system, it would work on all systems at once. In fact, since exploits
work very fast, this technique provides little protection. The system also does not protect against
data leakage attacks.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
[ Limit Movement

X Disable Movement

Impact on Attackers: This technique does not stop an attacker from exploiting a system. It
decreases the amount of time an attacker has to accomplish their goal. This makes it more difficult
to persist in the network. An attacker would have to compromise the load balancer or the networked
memory system or quickly jump to new systems as the older ones are being re-imaged.

Availability: This technique was prototyped by the authors but is not publicly released; See
http://scitlabs.com/

Additional Considerations: The technique provides little protection at a large cost. The at-
tacker can always jump to the new platforms (since they are identical) and continue to persist.
Moreover, the overhead to re-image the systems can be very large. The technique is also limited to
specific servers that are almost stateless or the state can be persevered in the configuration (e.g.,
DNS server).

Proposed Research: One direction for this technique would be to develop a better way to protect
the network memory. If an attacker can continually change or corrupt the data, the effectiveness
of this technique is significantly decreased. Another direction this technique could take would be
to introduce diversity into the operating systems. Different architectures, operating systems, and
servers that provide the same function could be used to increase the workload of the attacker. This
would reduce the likelihood of an attack working across all systems. Also preserving the state
beyond configuration files is a direction to explore.

Funding: Lockheed Martin, Virginia Center for Innovative Technologies
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5.10 GENETIC ALGORITHMS FOR COMPUTER CONFIGURATIONS
Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Scanning

Details: These techniques [118,119] have a long-term security goal and do not actively defend
against or respond to attacks. The idea is that the evolution of configurations over time effect the
lifetime of exploits and the varying configurations amongst systems helps prevent exploits from
working against multiple machines. The evolving configurations make collecting information about
a specific machine less reliable.

Description:

Details: This technique aims to find more secure configurations of systems over time using
ideas from genetics. The security of a configuration is defined as the number and severity of
security incidents reported while that configuration was active. A configuration can consist of
many parameters in a system such as which desktop manager is being used or which remote login
protocol is being used. The ideas that are being used from genetics include selection, crossover,
and mutation. Selection involves selecting the best configurations based on their security score.
Crossover involves taking two configurations and combining elements of each one to create a new
configuration. Mutation involves randomly changing parts of a configuration to make it different
from configurations on other systems. The goal is to create configurations with temporal and spatial
diversity. Temporal diversity means the configuration of one machine changes over time. Spatial
diversity means multiple computers do not have the same configuration at a given time.

How this process works is that every system starts with the same configuration. Since no other
configurations exist yet, it is mutated to create a new configuration. If the resulting configuration
is reasonable, it is set as the active configuration. After some time has passed, the security score is
calculated for that configuration. If the configuration pool is not full, this configuration is added into
this pool otherwise it replaces the worst configuration in the pool. The next iteration would involve
taking the two best configurations from the pool, doing a crossover to create a new configuration,
and applying a mutation to add some additional randomness to it. This new configuration then
goes through the same process of seeing if it is a reasonable configuration, making it active, and
calculating its security score. This process repeats over many iterations until ideally there are
configurations that have no security incidents.

Entities Protected: This techniques aims to protect the operating system or servers by
finding better configurations over time.

Deployment: This would be deployed on each system that has a similar purpose.

Execution Overhead:

e Unknown execution overhead due to reconfiguration
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Memory Overhead:
e None
Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

0 Data

O Source Code

O Compiler/Linker
X Operating System
[ Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

[J Seamless
X Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
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Kill-Chain Phases:

O Reconnaissance
O Access
[ Exploit Development

O Attack Launch

X Persistence

Interdependencies: A detection mechanism or set of mechanisms to be able to calculate the
security score is critical for this technique. It also assumes that the entire security posture of a
system can be controlled via configuration.

Weaknesses: This can be deceptive and give a false sense of security. A configuration can be
chosen as good but it could be the case where the system was just not under attack at the time.
Another large weakness of this technique is that the security score is based on detected attacks
and relies on the systems being constantly attacked. A stealthy attacker could still carry out their
attack. It may also be possible to manipulate the configuration selection by causing detections on
configurations the attacker does not want. Moreover, many important security aspects of a system
cannot be controlled with a configuration (See [66]). Also, it can take a long time to converge to
a good configuration. The technique does not protect against data leakage attacks or one-time
attacks either.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
O Limit Movement

X Disable Movement

Impact on Attackers: Depending on the configuration options being changed, this may have
little effect on the effort of an attacker. In ideal conditions and with strong detection mechanisms,
it could affect an attacker over time by making it more difficult for them to perform an attack.

Availability: This technique was prototyped by the author but is not publicly released.

Additional Considerations: Frequently changing the configurations can be impractical. Func-
tionality of the system may break because of reconfiguration. It can take a long time to converge
to a good configuration. Also systems evolve over time. New software could be install, old software
removed, system patches applied, operating system upgraded, etc. All these changes will result in
new or removed configuration options. Also the system crucially relies on a perfect detection and
monitoring capability to operate correctly.
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Proposed Research: A possible future direction for this project would be to expand it from
simple configurations to actual software as well. It might try running a service with a specific
server then later try running the same service with a different server that provides similar func-
tionality. This does not fix the reliance on detection mechanisms. Additional aspects that would
need to be investigated are how the configurations are combined to create new configurations, how
configurations are randomized, and how long a configuration would need to be active to get a
reasonable security score. Combining this technique with other movement techniques that provide
more proactive protection against classes of attacks might provide more overall protection. The
impact of configuration changes on the functionality of the system must be studied.

Funding: Pacific Northwest National Laboratory
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5.11 MOVING ATTACK SURFACE FOR WEB SERVICES
Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection, Control Injection, and Scanning

Details: This technique [120,121] can help mitigate a variety of attacks. Since the service
is being served randomly between systems with different frameworks, libraries, architectures, vir-
tualization technologies, and layouts, it is more difficult to construct exploits that will work under
every platform. The attacker also may not be able to predict when the system will change or which
system the load balancer will choose to service the request. The fact that the system is changing
constantly makes passively scanning and collecting information less useful.

Description:

Details: This technique employed diversification at different levels of a system and across
many systems to create a varying attack surface across all the systems. The technique is composed
of a frontend load balancer, a pool of virtual diversified systems, and a trustworthy controller. The
idea is to have a subset of the virtual systems online at a time and the load balancer chooses which
one will service a request. The trustworthy controller manages the virtual systems. Virtual systems
can be in one of three states: online, graceful shutdown, or offline. In graceful shutdown, they do not
accept new requests and finish processing any existing requests. In the offline mode, they are powered
off. When a system is to come back online, it is restored to a pristine state. The virtual systems are
randomly rotated in and out by the trustworthy controller. Three different mechanisms can trigger a
system to be taken offline. The first mechanism can be event driven where anomalous events are
detected or integrity checks fail. The second mechanism is a random selection where a system can be
taken offline at any random time even if no anomalous activity is detected. The third mechanism is a
maximum lifespan where a system is taken offline if the amount of time it has been online exceeds a
limit in order to reduce exposure to attacks. This technique does not support services that require
persistent state because they are wiped clean periodically. For this reason, the authors recommend a
framework such a Representational State Transfer (REST) so the web servers can be stateless and
still provide stateful services.

This diversification is done at the application level by using different implementations of the
web framework being employed or different implementations of software that those web frameworks
require. Diversification is done at the web server level by choosing different open source and
commercial web servers. Additional diversification is achieved by hosting these web frameworks
on the same web servers using different modules or technologies. Diversification is achieved at
the operating system level by choosing from a variety of open source and commercial operating
systems including Solaris, Windows, BSD flavors, and Linux flavors. Additional diversification
is achieved by putting in a mix of 32-bit and 64-bit versions. Diversification is achieved at the
virtualization level by using a mix of hypervisor-based and operating system level virtualization
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technologies that support some form of checkpointing and restoration of systems. With all these
levels of diversifications, the authors were able to come up with 1554 unique combinations.

Entities Protected: The primary function of this technique is to protect a web service but
the diversification also helps protect the operating system as a whole.

Deployment: This technique would be deployed in the web services.

Execution Overhead:

e K replicas impose at least K times overhead in execution

e Some overhead imposed by running in a virtual environment
Memory Overhead:

e K times memory used
Network Overhead:

e None
Hardware Cost:

e Hardware to support the various virtualization setups
Modification Costs:

0 Data

0 Source Code

O Compiler/Linker
0 Operating System
[ Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)

X Custom Programmer (General Knowledge)
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O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

0 Seamless
X Simple Configuration
O Complex Configuration (System Admin)

[J Expert Operator
Kill-Chain Phases:

X Reconnaissance
O Access
X Exploit Development

O Attack Launch

X Persistence

Interdependencies: If relying on the event-driven rotation, it is necessary to have good anomaly
and integrity checking mechanisms in place. This technique also requires a web framework that
supports running stateful services on stateless servers if stateful services are required. This is not
straightforward to achieve for arbitrary web services.

Weaknesses: This technique does not protect against web-service logic bugs or failure to sanitize
input. As a result, attacks like SQL injections could be leveraged if the service does not properly
sanitize input or put other mitigations in place. The load balancer and trustworthy controller are
both static machines and could be potential targets for an attacker. If an attacker can compromise
the trustworthy controller, he or she could control or stop the system rotation process. If the system
rotation process is not done quickly enough, the attacker may still be able to accomplish his or her
goal if he or she is not trying to be persistent. It is also possible an attacker has a set of attacks
that work only on certain combinations of software and the rotations of systems may eventually
get to that configuration. More importantly, this technique does not protect against data-leakage
attacks or attacks against one machine.

Types of Weaknesses:

X Overcome Movement
O Predict Movement

X Limit Movement
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0 Disable Movement

Impact on Attackers: This technique would slow down an attack and make it more difficult for
the attacker to exploit the machines but it would not stop him or her completely. An attacker
still has the chance of exploiting a system and achieving his or her goal before the active system
changes. An attacker could also try to leverage more advanced control-injection attacks that could
work across multiple systems.

Availability: This technique was prototyped by the authors but is not publicly released. It is
composed primarily of open source or commercial software.

Additional Considerations: The impact of diversity on identifying attacks is unknown. Having
a large number of diversified systems would increase the management and maintenance complexity.
This technique is only limited to a web server. Extending the technique to a generic service can be
very difficult.

Proposed Research: This technique could potentially be combined with additional internal oper-
ating system movement techniques to slow down the attackers further giving the system additional
time to migrate systems. Ensuring that the trustworthy controller is isolated and the virtual sys-
tems are not able to manipulate it would also be a worthwhile avenue to explore. The impact of
various types of diversity on attacks must also be studied.

Funding: Unknown
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5.12 LIGHTWEIGHT PORTABLE SECURITY
Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection and Control Injection

Details: This technique [122] helps mitigates persistent threats on a system by ensuring
the operating system boots into a clean and known-good state. The system can be rebooted in
between sessions to return the system to a good state removing any infections incurred during the
last session.

Description:

Details: The Lightweight Portable Security technique involves booting a system into an
isolated and minimal operating system. This operating system resides only in the memory of the
system and does not access any internal persistent storage devices. The operating system is on a
read-only bootable device or media ensuring that it cannot be corrupted or modified in a malicious
matter. The operating system is built off of the Linux operating system and includes a basic set
of applications such as a web browser, smart card middleware (such as the Department of Defense
Common Access Card or US Government Personal Identity Verification card), encryption software,
file browser, image viewer, PDF viewer, text editor, remote desktop software, and SSH client. It
also includes the ability to use external storage devices such as USB hard drives and memory sticks.
The public editions of this technique allow a person to browse the Internet without putting their
local machine at risk. The deluxe public edition has all the software of the regular public edition
with the inclusion of additional software such as office software. The Remote Access version of this
technique is meant to connect to enterprise networks and use internal network resources and it is
customized for each particular customer.

Entities Protected: This technique protects a user session by booting into a known good
and clean state. There are two primary use cases for this technique. If a person wants to browse
untrusted websites and wants to protect his local computer, he can boot one of the public editions
of this technique. A person might not trust the local computer and he wants to protect his online
session. In this case, he can boot from one of the editions of this technique and do activities like
online banking or connect to his work network securely without worrying about the local machine
assuming the hardware/firmware is trustworthy.

Deployment: This technique would be deployed on a generic machine by booting from a
read-only media.

Execution Overhead:
e Extra time required for re-booting into another OS

Memory Overhead:
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e Unknown memory overhead due to removal of hard drive
Network Overhead:

e Some overhead incurred if connecting through trusted networks
Hardware Cost:

e None
Modification Costs:

O Data

O Source Code

O Compiler/Linker
0 Operating System
0 Hardware

O Infrastructure

(No modification required)

Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

0 Seamless
0 Simple Configuration
X Complex Configuration (System Admin)

0 Expert Operator

Kill-Chain Phases:
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[ Reconnaissance

O Access

[ Exploit Development
[0 Attack Launch

X Persistence

Interdependencies: The technique assumes that secure and lightweight versions of the OSes are
available.

Weaknesses: This technique does not protect against compromised hardware in the system or
hardware connected externally to the system. An attacker could re-flash firmware on the machine
and persist. It is also possible for an untrusted external hardware device, such as a USB hard drive
or memory stick, is connected to the local machine. Since the technique supports using external
hardware, a new session may not be trusted if these external devices are mounted automatically.
More importantly, the technique does not provide any protection after booting into a new OS. The
sessions can still be compromised and information can still leak. The technique relies on rebooting
after performing any important operation or for performing potentially dangerous actions (browsing
an unknown website).

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: This technique removes the persistence of attacks. It makes it harder for
an attacker to remain on the system. Once a new session is initiated, any malicious code that was
placed on the system will be removed.

Availability: This technique is available in three different editions. There is a public edition,
public-deluxe edition, and remote access edition. The first two editions are free to download and use
but the third edition must be requested from the agency. See http://www.spi.dod.mil/
lipose.htm

Additional Considerations: Requires booting a system each time it needs to be used. It can
have a very large overhead due to rebooting. In many cases, it is difficult to distinguish between
benign and potentially dangerous actions. It must connect external devices for local persistent
storage. The OS runs completely in memory so the host would need an adequate amount in the
local machine.
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Proposed Research: This technique does provide reasonable protection from persistent threats
but it does not address all the locations a persistent threat could reside. The hardware firmware
inside of the host machine could have been tampered with in a malicious manner. An interesting
research direction might be to see if it is possible to leverage trusted hardware technologies to verify
hardware has not been tampered with as well. If the user intends to create a secure session because
he does not trust the local machine, it would also be good to look into making sure potential un-
trusted or malicious external devices connected to the local machine are not automatically mounted
into the trusted environment. One can also look into making reboots faster and more efficient.

Funding: Air Force Research Laboratory
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5.13 NEW CACHE DESIGNS FOR THWARTING SOFTWARE CACHE-BASED
SIDE-CHANNEL ATTACKS

Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Data Leakage Attacks

Details: This technique [123] aims to prevent a process from learning privileged information
about another process running on the same machine via observations of the cache behavior. The
attacker-controlled process is an unprivileged, user process and is limited to performing operations
normally permitted to user processes. The attacker does not exploit software vulnerabilities or
perform physical attacks.

Description:

Details: Several side-channel cache attacks enable an unprivileged process to deduce values,
such as encryption keys, by filling up the cache with known values and monitoring for when a value
is evicted by the victim process. The authors propose two approaches for combating these cache
side-channel attacks: partitioning the cache for different processes to avoid interference, and using
randomization during the eviction process. The randomization technique adds a layer of indirection
to the cache structure. If the cache line to be evicted belongs to another process, the cache will
randomly select a different set from which to evict. This prevents the attacker from determining
which value was evicted.

Entities Protected: This technique protects a user application on a machine from other
applications running on the same machine.

Deployment: The goal of the FY13 funding is to produce a hardware chip that would replace
the cache hardware in existing machines.

Execution Overhead:

e Less than 2% performance overhead on average
Memory Overhead:

e None
Network Overhead:

e None

Hardware Cost:
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e Cache must be replace with a new chip
Modification Costs:

] Data

O Source Code

O Compiler/Linker
0 Operating System
X Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
[J Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

J Reconnaissance
O Access
O Exploit Development

X Attack Launch

O Persistence
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Interdependencies: Designed for existing general purpose computing architectures.

Weaknesses: This technique does not protect against physical attacks or provide defense against
software vulnerabilities. Despite the less than 2% reported performance overhead, any overhead
may be a significant hurdle to adoption due to the relative scarcity of the attacks for which the
technique protects against.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: In order to achieve data leakage, attackers must exploit vulnerabilities in
the target software or have physical access to the system.

Availability: Not publicly available.

Additional Considerations: Cost and performance will be significant considerations for this
technique. The goal of the FY13 work is to provide no performance hit via an improved hardware
chip; if this is achieved at negligible cost, this could be a promising technique for next-generation
systems.

Proposed Research: Implementing randomization ideas into hardware has received compar-
atively less attention in the community when compared with software-based randomization tech-
niques. Hardware-based randomizations in general could be an interesting area for further research.

Funding: 2007 work funded by DARPA and NSF Cybertrust CNS- 0430487 and CNS-0636808,
DoD and Intel. 2013 work funded by DHS BAA 11-02 TTA12.
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5.14 NOMAD: MITIGATING ARBITRARY CLOUD SIDE CHANNELS VIA
PROVIDER-ASSISTED MIGRATION

Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Data Leakage Attacks

Details: This technique [124] can mitigate arbitrary side-channel based data leakage between
collocated VMs in a cloud environment. The VM is migrated periodically to different physical
machines, in order to bound the amount of information that can potentially leak to malicious VMs
sharing hardware with the victim. The threat model considers an adversary with multiple VMs
whose placement across physical machines is unknown to the provider or victim. It also considers
victims who use replication of information across VMs. Under these conditions, it can provide a
mathematical bound on the amount of information leaked assuming a known or estimated leakage
rate. Since this technique does not try to stop specific side-channels (e.g., cache), it is applicable
to both known and yet-to-be-discovered data leakage based on shared hardware.

Description:

Details: Nomad is a security-conscious VM migration algorithm for defending against side-
channel data-leakage attacks mounted by collocated virtual machines. It is run by the cloud
provider, and does not require any changes to the VMs themselves. Nomad is designed to mitigate
all possible hardware side-channels between VMs, by periodically migrating VMs to a new physical
machine. Nomad operates by providing an API to clients that allow them to specify constraints on
migration in terms of required availability. It then runs a placement algorithm that minimizes the
global information leakage across all pairs of VMs in that cloud (by trying to minimize the time
they are co-resident) while also minimizing the number of VMs that have to be moved in order to
maintain availability. This algorithm is rerun periodically, resulting in a new assignment of VMs
to physical machines.

The placement algorithm can be configured to minimize information leakage for one of four
scenarios based on features of the VMs and of the attacker. VMs may be either replicated or not.
Replication means that sensitive information is copied across victim VMs, such as a web server
with private database records. This could enable an attacker to learn sensitive information from
any one of several VMs, increasing the attack surface. Attackers may be either collaborating or not.
Collaborating attackers can work together if a victim moves from one collaborator to another. An
example of this is one attacker learning the first half of the bits of a cryptographic key, and a second
attacker learning the latter half, then sharing with one another. These two features (replication
and collaboration) combine into four possible scenarios, with the combination of VM replication
and collaborating attackers offering the most difficult security challenge. Note that the placement
algorithm cannot optimize for more than one such scenario at a time.

Entities Protected: Virtual machines running inside of a cloud environment with a trusted
provider.
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Deployment: This technique could be deployed by any cloud provider. The only changes
required are an update to the VM migration algorithm. No changes to the VMs themselves are
necessary.

Execution Overhead:

e The overhead of Nomad has two components: overhead suffered by the provider in computing
VM placement, and overhead suffered by the VMs by migrating them.

e The provider overhead is very minimal, with clusters containing thousands of virtual machines
incurring less than one second computation time.

e The VM overhead is specified by the client VMs as a minimum availability. Nomad will never
violate this, but security may be reduced if a VM has to be highly available (since it cannot
be moved as frequently).

Memory Overhead:
e The authors do not report memory overhead for the provider.

Network Overhead:

e The authors do not report network overhead incurred by migration, but acknowledge it may
be a concern

Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

O Compiler/Linker
[J Operating System
0 Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
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O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

O Seamless
X Simple Configuration
O Complex Configuration (System Admin)

U Expert Operator
Kill-Chain Phases:

00 Reconnaissance

X Access

0 Exploit Development
[0 Attack Launch

0 Persistence

Interdependencies: Nomad relies upon an existing VM migration system being present in the
cloud on which it is deployed.

Weaknesses: This technique has several weaknesses, though none render it unusable. First,
Nomad can only optimize security for one scenario at a time, i.e. one combination of (replicated /un-
replicated and collaborating/non-collaborating), even though differing users of the cloud may have
different workload types and threat models. This means that at any time, at least one class of
users might be suffering from reduced performance or security. Second, Nomad only provides a
quantifiable benefit if the provider is aware of the leakage rate of information from VMs. This may
be challenging to estimate, especially if the adversary is aware of high-bandwidth side channels that
the provider is not aware of. Third, an attacker who can mount a Sybil attack (i.e. acquire many
VMs all under one attacker’s control) may create a high probability of always being collocated
with a victim before and after migration. Finally, Nomad optimizes global security. A specific VM
might suffer poor security, if in so doing it increased the security of all other VMs more.

Types of Weaknesses:

X Overcome Movement

O Predict Movement
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[ Limit Movement

O Disable Movement

Impact on Attackers: This technique could significantly hinder attackers trying to leak sensitive
data across VMs, such as cryptographic keys. The attacker would either have to have a large
number of virtual machines, or use a side-channel of sufficiently high bandwidth to overcome the
time limits imposed by Nomad’s migration system.

Availability: No code publicly available
Additional Considerations: None

Proposed Research: Nomad’s primary unknown overhead is in network bandwidth consumed
by migration. This could potentially be evaluated and mitigated by integrating Nomad with a
Software-Defined Networking component that could reserve and release bandwidth in advance
(since Nomad’s movement is predictable). Additionally, a technique to bound the amount of harm
individual VMs can suffer due to global optimization would be useful.

Funding: National Science Foundation
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5.15 MULTIPLE OS ROTATIONAL ENVIRONMENT
Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection, Control Injection, Scanning

Details: This technique [125], called MORE, is designed to protect against a remote ad-
versary attempting to exploit the operating system of a vulnerable service, such as a web server,
but not the service itself. The adversary is assumed to be scanning for vulnerabilities, as well
as potentially using zero-day exploits once the set of open services is identified. MORE seeks to
mitigate this threat by periodically changing the operating system being used to host the service.
If done rapidly enough, rotating the operating system will cause an attacker’s vulnerability scans
to become stale and no longer usable.

Description:

Details: MORE hosts a web service from a set of active servers, each of which runs a different
operating system (though the authors restricted this to different Linux distributions). All of these
servers are supported by a common database backend. The technique uses a pool of active IP
addresses and a single “spare” IP address. A front-end load balancer directs incoming requests
randomly to each active IP address. Periodically, a VM is rotated out of the set of active IP
addresses and assigned the spare address. It is then inspected for signs of intrusion, and may be
restored to a known-good state. At the next rotation period it will be assigned an active IP address,
and a previously active VM will be rotated into the spare address for inspection.

Entities Protected: Virtual machines hosting potentially vulnerable servers

Deployment: This technique could be deployed by any system administrator. It uses pre-
existing technology and common system architectures.

Execution Overhead:

e No analysis of overhead was available
Memory Overhead:

e No analysis of overhead was available
Network Overhead:

e No analysis of overhead was available

Hardware Cost:
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e None
Modification Costs:

] Data

O Source Code

O Compiler/Linker
0 Operating System
] Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

0 Seamless
X Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

X Reconnaissance

[0 Access

O Exploit Development
X Attack Launch

X Persistence
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Interdependencies: MORE relies on strong intrusion detection systems in order to detect com-
promised servers that have been rotated to the spare IP address. It also requires that the service
being hosted can be installed and run on all the operating systems used to provide diversity.

Weaknesses: This technique has several weaknesses. It does not protect the actual service be-
ing hosted, which remains vulnerable to both application-layer attacks (e.g., SQL injection) and
exploitation of memory corruption vulnerabilities. The fact that rotation is periodic provides a
time window during which attackers can scan and attack the system as normal, and increasing the
rotation rate will likely have performance implications. Additionally, an intelligent attacker can
simply wait for a scanned VM to come back into rotation. This means that the attack surface is
actually increased. Once all operating systems have been identified through scanning, an attacker
only needs to find a vulnerability in any one operating system, then simply wait for that VM to
become reachable again.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: This technique could increase the time it takes an attacker to identify
and exploit an operating system. However, as discussed above, it may actually help the attacker
by increasing the variety of targets the attacker can choose from.

Availability: No code publicly available

Additional Considerations: Diversifying the operating systems used to host a service will in-
crease management and maintenance complexity.

Proposed Research: This technique could potentially be combined with either static or dynamic
application layer diversity, such as through use of a multi-compiler. It could also benefit from
automated intrusion detection and cleaning mechanisms.

Funding: Department of Energy
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5.16 DYNAMIC APPLICATION ROTATION ENVIRONMENT FOR MOVING TAR-
GET DEFENSE

Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Code Injection, Control Injection, Scanning

Details: This technique [126], called DARE, considers a remote attacker attempting to
exploit a vulnerable web service listening on an open port. This technique is designed to protect
against a remote adversary attempting to exploit the operating system of a vulnerable service,
such as a web server, but not the service itself. The adversary is assumed to be scanning for
vulnerabilities, as well as potentially using zero-day exploits once a web server is identified. DARE
seeks to mitigate this threat by periodically changing the server being used to host the service.
Specifically, they consider a web server hosting an Internet-facing web page. If done rapidly enough,
rotating the server may cause an attacker’s vulnerability scans to become stale and no longer
usable.

Description:

Details: DARE hosts a set of diversified web servers, each using a different software package
to host the same website. A load balancer front-end randomly directs incoming requests to one of
the servers, based on a random but bounded service interval, before switching to another server.
The authors specifically consider Apache and Nginx. Each is configured to listen only on localhost,
with all requests first passing through the load balancer, which is the only Internet-accessible
component.

Entities Protected: Internet-accessible servers, such as web servers

Deployment: This technique could be deployed by any system administrator. It uses pre-
existing technology and common system architectures.

Execution Overhead:

e The authors reported that overhead was negligible
Memory Overhead:

e The authors do not report memory overhead
Network Overhead:

e The authors perform only preliminary measurement of network overhead, but note that rout-
ing table updates can cause spikes in request latency of several hundred milliseconds

Hardware Cost:
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e None
Modification Costs:

] Data

O Source Code

O Compiler/Linker
0 Operating System
] Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

0 Seamless
X Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

X Reconnaissance

[0 Access

O Exploit Development
X Attack Launch

O Persistence
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Interdependencies: DARE relies on the service it is hosting to be stateless, which is nontrivial
to implement for many services beyond static websites.

Weaknesses: This technique has several weaknesses. It only protects the specific service being
diversified, not the underlying operating system or support software. The fact that request redi-
rection is semi-periodic provides a time window during which attackers can scan and attack the
system as normal, and increasing the redirection rate will likely have performance implications for
request latency. Additionally, an intelligent attacker can simply wait for a scanned and identified
server to come back into service (and can confirm this with subsequent scans). This means that the
attack surface is actually increased. Once all server software packages have been identified through
scanning, an attacker only needs to find a vulnerability in any one server, then simply wait for that
VM to become reachable again.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
OO Limit Movement

O Disable Movement

Impact on Attackers: This technique could increase the time it takes an attacker to identify and
exploit a web service. However, as discussed above, it may actually help the attacker by increasing
the variety of targets the attacker can choose from.

Availability: No code publicly available

Additional Considerations: Diversifying the web servers used to host a service will increase
management and maintenance complexity. Additionally, stateful services will have to be made
stateless (potentially by backing them with a stateful database). This is a potentially complex and
expensive architectural change.

Proposed Research: This technique would benefit from the ability to automatically generate
diversity among web servers, as well as the ability to re-diversify on a periodic or random basis (e.g.,
via compiler diversity). This would prevent attackers from predicting or waiting for previously-
identified servers.

Funding: Department of Energy
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5.17 SCHEDULER-BASED DEFENSES AGAINST CROSS-VM SIDE-CHANNELS
Defense Category: Dynamic Platforms
Defense Subcategory:
Threat Model:
Attack Techniques Mitigated: Data Leakage Attacks

Details: This technique [127] can mitigate side-channel-based data leakage between collo-
cated VMs in a cloud environment via scheduler-based soft isolation. By limiting the frequency of
preemptions by other VMs sharing the same processor, the technique disrupts Prime+Probe side
channel attacks. The threat model considers an adversary that shares a processor with the victim
machine, such as in cloud environments. The shared hardware leaks, among other data, timing in-
formation about memory accesses by the victim. This can be used to leak, e.g., cryptographic keys
via a method called Prime+Probe. The attacker primes a shared cache by filling it with entries via
accesses to a fixed set of addresses. It then yields execution to the victim, whose own computation
cause the attacker’s cache entries to be evicted. The attacker then preempts the victim as quickly
as possible, regaining control of execution. It accesses the address set again, and by measuring
the time to access memory can determine which entries were evicted by the victim. This leaks
informations about which memory addresses were accessed by the victim.

Description:

Details: This technique takes advantage of a scheduling feature in the Xen hypervisor
that allows for rate limiting of VM preventions, called Minimum Run Time (MRT) scheduling.
The MRT parameter determines a minimum length of time that any virtual CPU (VCPU) can
run on a physical CPU (PCPU) before being preempted by the hypervisor and switched out to
allow another VM to execute. This technique leverages MRT scheduling to impose soft isolation
and disrupt Prime+Probe side channel attacks. The authors experimentally confirm that an MRT
longer than the compute time of a sensitive computation (such as encryption) completely removes
the ability of an attacker to measure intermediate computation states via priming and probing of
the victim. For the ElGamal algorithm on the authors’ testbed, this computation time is 2 ms,
and an MRT of 5 ms is sufficient to disrupt any cache-based side channel.

The authors augment the MRT defense with core-state cleansing in order to extend protec-
tion to interactive workloads that may voluntarily yield execution before the MRT expires. This
mechanism operates by executing a sequence of machine code instructions that overwrite all lines
of the instruction, data, and branch prediction caches. The scheduler runs the cleansing sequence
whenever an interactive process yields the VCPU, prior to the next VM beginning its execution.

Entities Protected: Virtual machines running in a cloud environment

Deployment: This technique can be deployed easily on any cloud platform using Type 1
hypervisors, specifically Xen.

Execution Overhead:
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e Execution latency scales proportionally with MRT for computationally intensive workloads,
which may be unacceptable for latency-sensitive workloads. CPU-intensive batch workloads
are only minimally affected, and often benefit from high MRT. This is not surprising, as it
was the original motivation for providing MRT scheduling options.

Memory Overhead:
e None
Network Overhead:
e None
Hardware Cost:
e None
Modification Costs:

0O Data

O Source Code

O Compiler/Linker
0 Operating System
0 Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
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O Simple Configuration
O Complex Configuration (System Admin)

[J Expert Operator
Kill-Chain Phases:

00 Reconnaissance
X Access
O Exploit Development
X Attack Launch
[0 Persistence
Interdependencies: This technique relies on scheduling features of the Xen hypervisor. More

generally, any Type 1 hypervisor will suffice as long as Minimum Run Time scheduling can be
implemented.

Weaknesses: This technique only mitigates side channels based on shared access to a common
cache. Other side channels (e.g., disk access time or power analysis) feasible. Additionally, if
the MRT is ever set lower than the execution time of a sensitive computation, noisy but usable
information may leak to an attacker.

Types of Weaknesses:

X Overcome Movement

X Predict Movement

U Limit Movement

] Disable Movement
Impact on Attackers: This technique could significantly hinder attackers trying to exploit cache-
based side channels to leak sensitive data across VMs, such as cryptographic keys. The attacker

would have to rely on nonce-cache based side channels, which may entail physical access or reliance
on indirect measurements of computation state such as disk access.

Availability: No code publicly available
Additional Considerations: None

Proposed Research: This technique is currently specific to cache-based attackers. However, the
idea of soft isolation may be applicable to other side channels of interest, such as power usage or

1/0.

Funding: National Science Foundation
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5.18 DUPPEL
Defense Category: Dynamic Platforms
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Data Leakage Attacks

Details: This technique [128] can mitigate data leakage, via L1 and L2 cache-based timing
side-channels, between collocated VMs in a cloud environment. Noise is injected into instruction
access times via a kernel module run by the defending virtual machine. The threat model considers
an adversary virtual machine that shares at least one CPU core with the victim. Specifically, it
assumes the adversary shares an L1 or L2 cache with the victim. Other side channels, such as
I/O or power, are considered out of scope. There is some discussion of adapting Diippel to other
cache-based side channels (i.e., branch prediction), but this is considered future work. Additionally,
Diippel does not defend systems using SMT, or protect the shared L3 cache.

Description:

Details: This technique periodically executes a cache cleansing procedure, which evicts all
cache entries. This effectively erases any cache timing patterns caused by the target VM’s compu-
tation, as post-eviction, all memory addresses will have equivalent access times. Two optimizations
are used to determine how frequently the cleansing procedure should be executed.

The first uses dual modes of operation: sentinel and battle mode. In sentinel mode, cache
cleansing happens infrequently, and imposes minimal overhead. Diippel monitors the preemption
rate of the protected VM (i.e., how frequently the VM is suspended while another VM executes).
If the number of preemptions exceeds 10 per millisecond, Diippel assumes a side-channel attack
(which relies on rapid preemption) is in progress and switches to battle mode. In this state, the
cache is cleansed much more frequently, leading to increased overhead but higher noise induced on
the side channel.

The second optimization limits protection to critical code regions. In order to avoid requiring
source code modifications to applications, Diippel makes sensitive code pages in memory as non-
executable. When the program attempts to run that code, the resulting page fault is used to make
the memory readable and initiate a cache cleanse. This does require a user to enumerate sensitive
code regions and manually configure Diippel to protect them, however.

Entities Protected: Virtual machines running in a cloud environment

Deployment: This technique can be employed by loading the Diippel kernel module into
the VM to be protected. No hypervisor or cloud infrastructure changes are necessary.

Execution Overhead:
e The authors report a worst-case overhead of 7%, and an average of 4%.

Memory Overhead:
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e None, beyond loading the kernel module
Network Overhead:

e None
Hardware Cost:

e None
Modification Costs:

U Data

0 Source Code

O Compiler/Linker
X Operating System
U0 Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator

Kill-Chain Phases:
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[ Reconnaissance

X Access

0 Exploit Development
0 Attack Launch

[ Persistence

Interdependencies: Diippel requires a Type 1 hypervisor to be running. The current implementa-
tion also specifically requires Xen. Its preemption detection mechanism uses a shared datastructure
provided by Xen that records the current system time.

Weaknesses: Diippel has some weaknesses associated with preemption and mode switching. First,
because it runs in the VM it is protecting, Diippel’s cleaning operation may itself be preempted by
the hypervisor, resulting in an incompletely cleansed cache that contains data useful to attackers.
Second, Diippel uses configurable timing intervals to schedule cleansing. Unless it runs after every
instruction (which is prohibitively expensive), an attacker can still leak information by probing the
cache between cleansing operations. Finally, Diippel’s preemption detection threshold is arbitrary.
An attacker could avoid triggering Diippel to switch from sentinel to battle mode by slowing the
rate of attack. This causes loss of precision, but is likely preferable to triggering the defense.

Types of Weaknesses:

X Overcome Movement

O Predict Movement

X Limit Movement

[0 Disable Movement
Impact on Attackers: Diippel mitigates the amount of information leaked to attackers via L1
and L2 cache side channels. The authors trained an SVM classifier to identify sensitive instructions.
Without Diippel the classifier has 90% accuracy, and with Diippel the accuracy dropped to 38%.

This indicates that the defense limits, but does not eliminate, the amount of information that can
be leaked.

Availability: No code publicly available
Additional Considerations: None

Proposed Research: Diippel relies on timing intervals to trigger cache cleaning. It would be
useful to investigate synchronizing cleansing with possible attack actions, such as preemption. This
would provide stronger guarantees about data leakage, and avoid some of the weaknesses relating to
Dippel itself be preempted. It would also be valuable to extend this approach to other cache-based
side channels, such as the branch prediction cache.

Funding: National Science Foundation
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6. DYNAMIC NETWORKS

6.1 DYNAT
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Scanning, Resource, Spoofing, and Data Leakage

Details: This technique [129,130] assumes the hosts and entities employing this technique
are safe. It can help mitigate scanning attacks by obfuscating various parts of network packet
headers but not the payload of the packets. Depending on the placement of the obfuscator, it could
be used to combat some resource attacks like denial of service attacks. If the attacker is sending
a flood of packets, the protected packet fields would be unencrypted and produce random values
that would likely result in them not hitting the intended service. This same property would also
increase the likelihood of detecting anomalies. This technique would also increase the difficulty of
performing some spoofing attacks. It would be more difficult for an attacker to capture some traffic
and replay it back to the service because of the changing obfuscation keys and uncertainty about
how the network is currently mapped.

Description:

Details: Dynamic Network Address Translation (DYNAT) is a protocol-obfuscation tech-
nique. The idea is to randomize parts of a network packet header. This randomization can make
it more difficult to determine what is happening on a network, who is communicating with whom,
what services are being used, and where the important systems are located depending on how
the technique is deployed. Some parts that can be scrambled include the Media Access Control
(MAC) source and destination address, Internet Protocol (IP) source and destination address, IP
Type of Service (TOS) field, Transmission Control Protocol (TCP) source and destination port,
TCP sequence numbers, TCP window size, and the User Datagram Protocol (UDP) source and
destination port. Ideally, the randomization is done with a strong cryptographic hashing scheme
or encryption. The key can be changed on a clock-based scheme or via properties in the network
such as packets sent. The key used to scramble can be generated via static means on each host,
it can be split to be partially static and partially locally or externally dynamic, or it can be fully
locally or externally dynamic.

Entities Protected: This technique aims to protect the network traffic as it is traveling
between systems.

Deployment: This technique can have a number of different deployment scenarios depending
on the level of protection needed. It can be deployed to workstations, servers, routers, and gateways.
This could be used to protect switched Local Area Network (LAN) segments, contention-based LAN
segments, LAN-to-LAN connections (local router connections), Gateway-to-Gateway connections
(networks separated by the internet or long range connection), or a combination of LAN segments
and gateway connections.
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Execution Overhead:
e None

Memory Overhead:
e None

Network Overhead:

e Depending on the deployment and fields obfuscated, the network overhead can be significant.
For instance, if using this on a switched network and obfuscating the MAC address, this could
cause the switches to fill up their memory and cause significantly more Address Resolution
Protocol (ARP) traffic to determine which switch port to route packets through next.

Hardware Cost:
e Additional hardware may be required to handle the routing overhead.
Modification Costs:

O Data

[ Source Code

O Compiler/Linker
X Operating System
X Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level/Kernel)

Expertise Required to Operate:
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X Seamless
J Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

X Reconnaissance

X Access

0 Exploit Development
O Attack Launch

[0 Persistence

Interdependencies: To make this technique more effective, it should be used in combination with
a packet payload encryption mechanism. Possibilities might include Secure Sockets Layer (SSL)
or the IP Security (IPSec) protocol. Another mechanism needed is a reasonably strong encryption
mechanism for the protocol obfuscation. A mechanism to generate new keys securely across all the
participating systems is also necessary.

Weaknesses: The use of other networking protocols can reduce the effectiveness of this technique.
Additional information is added to the packet headers with protocols like Multiple Protocol Layer
Switching (MPLS) or using static Virtual Local Area Networks (VLAN). This additional informa-
tion cannot be obfuscated and would leak additional information about what is going on inside the
network. This technique does not do anything to change packet sizes, vary packet timing, or use
dummy packets so it is susceptible to traffic analysis. More importantly, this technique only limits
reachability. For services that can be reached from outside, this technique offers no protection.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
X Limit Movement

1 Disable Movement
Impact on Attackers: This technique increases the workload for an attacker but does not nec-
essarily stop them from collecting the information they need. Traffic analysis could still be used to

profile types of traffic or the payload of the packets could be analyzed to collect information about
the network.
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Availability: This was prototyped by the original authors but is not publicly released.

Additional Considerations:

e This technique can severely limit a server’s functionality because it cannot be reached from
outside.

e Depending on the placement of these obfuscators, it could have adverse effects on other
network equipment. For example, placing them behind routers or gateways may inhibit that
device’s ability to do traffic filtering.

e Depending on the fields obfuscated and the placement of the obfuscators, it could have adverse
effects on other network equipment. For example, if MAC address obfuscation is being used,
it could break port locking on switches if the MAC address is changing constantly due to
obfuscation key rotation.

e Depending on the fields obfuscated, it could have adverse effects on other network protocols.
For example, if MAC address obfuscation is being used, it could break dynamic Virtual Local
Area Networks (VLAN).

Proposed Research: This technique could be expanded to harden it against traffic-analysis
techniques. The obfuscators could be modified to include additional scrambling. This could include
varying the timing of packets are sent from the system, inserting extra padding into the packets
to vary packet size, and sending out dummy packets. Payload encryption is not currently a part
of this technique and it increases the effectiveness of the technique by not allowing the attacker to
analyze the content of the packets. More research would be needed to determine if there are more
cases of special protocols leaking information making this technique less effective.

Funding: Sandia

240



6.2 REVERE
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Resource, Spoofing, and Data Leakage

Details: This technique [131] can help protect against a couple of classes of attacks to some
degree. It helps protect against resource attacks like denial of service or manipulating content on
the network. The effects of denial of service attacks are mitigated by the distributed and well-
connected nature of the overlay network. An attacker would need to be able to flood potentially
many thousands of machines simultaneously. This technique helps protect against content manip-
ulation by using digital signatures on the content that it is distributing. This allows every node in
the network to verify the content assuming the signature has not been compromised. This tech-
nique also helps protect against some spoofing attacks like man-in-the-middle, traffic replay, and
impersonation attacks. This would help mitigate man-in-the-middle attacks by using strong au-
thentication and trust relationships between each node in the network. Content replay attacks are
mitigated by dropping duplicate content at each node. Impersonation attacks are also mitigated
by the use of public key cryptography and digital signatures.

Description:

Details: Revere is a technique that involves creating an open overlay. An overlay network
is an example of a dynamic network in that it can change paths, reconfigure, and respond to links
or nodes going down dynamically. The network consists of a central distribution center that is the
root of the network and nodes, or clients, receiving the content from the distribution center. Each
node in the network can be a parent or a child. A parent can have multiple parents and multiple
children. When a new node wants to join the network, it determines the fastest parent that it can
attach to and performs a handshake with that parent to see if it will accept the new node. Once a
node has found a parent, it then seeks out other additional parents to increase its resiliency.

Security is accomplished in this overlay by the distribution center digitally signing the content
it is pushing out. Each node in the network can verify the signature of the content before using
it and passing it on to its children. If the authenticity of an item is in question, it can be pushed
back up to the node’s parents and eventually the distribution center to be verified. Security can
also exist between the parent and child nodes. Each node can support some set of authentication
methods and the child can negotiate a method with the parent. Security appliances or authorities
can also be employed for this task such as a Certificate Authority. Each node can have its own set
of rules to determine if it should trust a parent or a child when they are negotiating.

Reliability is accomplished by the many-to-many relationships between the nodes. This pro-
vides many paths for content to be delivered and duplicate items are dropped at a node. Each
node employs a heartbeat-type message between its parents and children to determine if they are
still online. If a child does not receive a heartbeat from a parent in a certain amount of time, it
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will assume that parent is gone and not use it anymore. Each parent is also capable of sending a
message to tell a child that it is no longer usable.

Fast delivery is accomplished by each node maintaining the fastest path back to the distri-
bution center. Each child has a Parent Path Vector (PPV) that is the fastest path back to the
distribution center, which includes that parent. It also maintains a Node Path Vector (NPV) that
is the fastest of the PPVs. If a parent that is part of the NPV goes down then the next fastest
of the PPVs is chosen to be the new NPV. The speed of a link can be calculated at the child by
analyzing the timestamps of the periodic heartbeat messages. The mesh-like distribution of nodes
also helps push content out quickly.

The technique was prototyped as a Java client and tested up to 3000 nodes. Their testing
showed that an update could reach all nodes in less than one second on average. They projected
that an update could reach every node on a network of one hundred million nodes in less than four
seconds.

Entities Protected: This technique protects the integrity and availability of content deliv-
ered over a network.

Deployment: This technique would be deployed as a client on a system that wishes to
participate in the overlay.

Execution Overhead:
e None

Memory Overhead:
e None

Network Overhead:

e The control messages passed between nodes does cause extra traffic on the network. Recon-
figuration and routing can impose unknown network overheads.

Hardware Cost:
e None
Modification Costs:

U Data
0 Source Code
O Compiler/Linker
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[0 Operating System
] Hardware

O Infrastructure

(No modification required)

Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)

Expertise Required to Operate:

] Seamless
O Simple Configuration
X Complex Configuration (System Admin)

O Expert Operator

Kill-Chain Phases:

X Reconnaissance

X Access

0 Exploit Development
O Attack Launch

[ Persistence

Interdependencies: This technique relies on good authentication mechanisms between nodes,
good rules to determine if a node is trustworthy, and the security of the distribution centers.

Weaknesses: The security of the updates relies on the security of the distribution center. The
authors mention that there are backup private keys available to use if one is compromised but, if an
attacker is able to compromise one, it is not unreasonable to conclude the attacker could compromise
the backups as well. This would allow the attacker to masquerade as the distribution center and
push out fake updates, pollute the update repositories, or do other tampering of the content. The
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node trust mechanism suffers from a similar problem. If keys are being used to sign messages to
determine the authenticity and trustworthiness of a node, an attacker could have compromised a
previously trusted host and use their identity. Also more importantly, the technique is focused
on protecting reachability, if the machine can be reached from outside the overlay network, this
technique does not provide any protection.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: The amount of impact this has on an attacker depends on the attacker’s
goals. If the attacker intends to poison the network with malicious or corrupted updates then the
impact is correlated to the difficultly of compromising the distribution center and the private keys.
If the attacker were attempting to bring down the network, the increase in difficultly would be
correlated to the size of the network. The larger and more connected the network is, the more
difficult it would be for an attacker to disrupt it as a whole. However, this technique does not
provide protection for individual hosts.

Availability: This technique was prototyped by the authors but is not publicly available.

Additional Considerations: Some aspects of the paper are left very vague. Having a large
trusted network or authentication between all nodes in the network is a good idea but if the
network is spread across the world, how is setup for a new node wanting to join the network done?
It discusses setting trust rules for a node but it is not clear what such a rule would entail or how a
system could determine if another node is truly trustworthy simply by a handshake request.

Proposed Research: A dynamic network solution combined with other host-protection techniques
must be explored.

Funding: Unknown
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6.3 RITAS
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Resource, Exploitation of Privilege/Trust, Scanning

Details: This technique [132] is meant to impede an attacker from manipulating messages
on the network or taking a service offline. The proposed protocols allow various processes to reach
agreement on a message while accounting for a certain threshold of bad processes. Running multiple
instances of processes also creates more redundancy in the service.

Description:

Details: Randomized Intrusion-Tolerant Asynchronous Services (RITAS) is a technique that
builds a set of fault-tolerant consensus-based protocols on top of Transmission Control Protocol
(TCP) and the Internet Protocol Security (IPSec) protocol. TCP provides a reliable channel and
IPSec provides integrity to the data being transmitted. This technique is to be used among a set
of n processes. A process is considered corrupt if it does not follow its protocol until termination.
This technique can handle at most f = L("gl)J corrupt processes. There are no assumptions
about bounds on processing times or communication delays. The processes are assumed to be fully

connected and each pair of processes share a secret key.

The first protocol is Reliable Broadcast. This protocol ensures that all correct processes
deliver the same message and, if the sender is correct, the message is delivered. The next protocol
is Echo Broadcast. It is a more efficient and less powerful version of the first protocol. It does not
guarantee all processes will deliver a message if the sender is corrupt. The first consensus protocol
is Binary Consensus. It builds upon Reliable Broadcast and allows processes to agree on a binary
value (either one or zero). It is the only protocol of this technique that includes randomization if
a consensus cannot be made. The next consensus protocol is Multi-valued Consensus. This allows
the processes to agree on arbitrary length values and builds on top of Reliable Broadcast, Echo
Broadcast, and Binary Consensus. The next consensus protocol is Vector Consensus. It allows
the processes to agree on a subset of proposed values. It builds on the Reliable Broadcast and
Multi-valued Consensus protocols. This ensures that each process decides on the list of values of
size equal to the number of processes. Each element of the list corresponds to a process (element
one of the list is the value of process one and so on). This ensures that each element of the list
is either the value proposed by that process or the default value and at least f + 1 elements were
proposed by correct processes. The final protocol is the Atomic Broadcast protocol. This protocol
builds on Reliable Broadcast and Multi-valued Consensus. This protocol ensures that each message
is delivered reliably and in the same order to all processes.

Using randomization, this technique implements a dynamic network that is capable of guar-
anteed delivery given limited number of malicious nodes.
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Entities Protected: This technique protects the information returned from a service by
ensuring a majority of the services agree on the results.

Deployment: This technique would be integrated into the code of programs that wanted to
use these new protocols.

Execution Overhead:

e Additional resources required to run many of the same services

e Additional time added while the protocols are reaching agreement
Memory Overhead:

e Additional resources required to run many of the same services
Network Overhead:

e [PSec adds an additional 24 bytes to each packet header

e Additional network traffic by all the broadcasting and exchanging of messages while the
protocols are reaching agreement

e IPSec adds an average 30% latency for each protocol

e Can have an impact on network throughput for large volumes of traffic
Hardware Cost:

e None
Modification Costs:

O Data

X Source Code

O Compiler/Linker
0 Operating System
0 Hardware

O Infrastructure

Expertise Required to Implement:
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O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
J Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
Kill-Chain Phases:

0 Reconnaissance

X Access

O Exploit Development
[0 Attack Launch

[0 Persistence

Interdependencies: There are limited applications that can benefit from a protocol like RITAS.
Additional protection techniques are certainly necessary.

Weaknesses: One large weakness of this technique is that is can only tolerate f = L(n%l)j

compromised processes. More importantly, RITAS does not provide any protection against one-
node compromises. Attacks like data leakage (exfiltration) are still a concern.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: This technique is only useful against integrity attacks. If an attacker were
trying to manipulate the output of programs or the data being passed around on the network, this
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would increase his workload because the attacker would need to compromise a certain percentage of
processes as opposed to just one. This also adds additional impact to the attacker if he were trying
to take down the process or service. Running multiple copies provides overall greater resiliency if
one or more were to fail.

Availability: This technique was prototyped by the author but the code was not publicly released.

Additional Considerations: This method is very limited in scope in that it deals with a partic-
ular problem (message passing) with a protocol. Much of this work is very theoretical.

e May not work well for applications that require very low latency or streaming
e Needs to work with applications where multiple instances would produce the same output

e Running potentially numerous instances of a process will likely increase the maintenance
workload and overhead

Proposed Research: This technique abstracts out what the processes are actually doing or
how they are setup. Adding randomization or diversity techniques to the individual processes or
machines they reside on would further increase the workload of the attacker assuming that such
diversity did not result in the processes producing different outputs. If all processes were running
on similar systems, if an attacker was able to compromise one, they may also be able to compromise
many with similar methods degrading the effectiveness of this technique.

Funding: European Network of Excellence, FCT (Portugal)
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6.4 NASR
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Resource and Scanning

Details: This technique [133] was designed to mitigate and slow the effects of an IP address
hitlist-based worm. It does not actually stop any specific attacks. It can be used on some level to
reduce the effectiveness of scanning attacks. The information collected from these attacks would
change as the internet protocol addresses of the systems changed.

Description:

Details: Network Address Space Randomization (NASR) is a technique that involves chang-
ing the IP address of systems more frequently. The authors modified a Dynamic Host Configuration
Protocol (DHCP) server to have short IP address leases and to force an IP address change when
a lease expires. The side effect of changing these IP addresses constantly is that persistent or
active connections would be dropped during the address change. The authors developed sensors to
attempt to profile the services on a system and the connections on a system. If a system has many
connections that would be dropped, the changing of the address is delayed. There is a hard limit
where a system will be forced to change its IP address as well if it has not changed for a long time.
There are some types of systems that have constant persistent connections that would be excluded
from this technique. There are also some systems that require a static IP address that would be
excluded as well. Domain Name System (DNS) servers can be used for outside access to servers
and services to mitigate the impact a constantly changing IP address would have on end users.

Entities Protected: This technique helps mask the identify of systems and servers from
information collection and targeted attacks.

Deployment: This technique would generally be implemented in segments of a local area
network (LAN).

Execution Overhead:
e None
Memory Overhead:
e None
Network Overhead:
e Dropped connections due to IP address changes during interactions

Hardware Cost:

249



e None
Modification Costs:

] Data

O Source Code

O Compiler/Linker
X Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
[J Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

X Reconnaissance

X Access

O Exploit Development
O Attack Launch

O Persistence
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Interdependencies: This technique only slows down certain types of attacks but relies on other
detection mechanisms to detect these attacks.

Weaknesses: This technique does not protect systems that rely on static IP addresses or systems
that use DNS. If a system is using DNS, the attacker can just point to that address and does not
have to worry about the actual IP address. The effectiveness of this technique is also reduced if
there is not a large enough pool of IP addresses available.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
X Limit Movement

X Disable Movement

Impact on Attackers: This may impose some overhead on the attacker to maintain a mapping
of systems but it, by itself, does not stop an attacker from launching any attacks against a system
or server.

Availability: This technique was prototyped by the authors but code was not publicly released.

Additional Considerations: This technique does not provide any protection against targeted
attacks or attacks that can reach the machine using higher level protocols. It also does not protect
against client-side attacks (e.g., browsing to a malicious website). The technique is very limited in
scope and can break many functionalities.

Proposed Research: This technique could be extended to have a larger pool of addresses to
use for randomization. Another idea would be to extend it to randomize network properties such
as port numbers. An external abstraction layer or proxy could be used to translate addresses
coming into this network such as a Network Address Translation (NAT) device. This would make
the individual internal systems transparent to the outside world. Combining this technique with
other network technologies that manage connections between systems could reduce the amount of
dropped connections due to an address change.

Funding: European Commission/Information Society Technologies, Greek Secretariat for Research
and Technology

251



6.5 MUTE
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Resource and Scanning

Details: In this technique [134], the shifting IP addresses would make it more difficult for an
attacker launching denial of service type attacks against individual systems in the network. The
shifting IP addresses, port numbers, and packet routes would also make it more difficult for an
attacker running scans on the network trying to identify what systems are there as well as the
services running on those systems.

Description:

Details: A Mutable Network (MUTE) is a technique that involves changing Internet Protocol
(IP) addresses, port numbers, and routes to destinations inside of a network. This technique is
proposed to be implemented as a sort of virtual overlay to the existing network so the original IP
address and information on the systems never changes. All traffic is routed independently over
this virtual overlay. Synchronization of IP address information across the network would be done
across encrypted channels. There would also be mechanisms in place to apply transformations
on the network traffic to confuse the tools attackers are using to identify the services and hosts.
The packets can be changed based on rules distributed amongst routing entities. It can change
the source and destination IP address as well as source and destination ports. There is a sense of
possible network configurations so packets can be rerouted to get to their destination via a different
path. There would also be policies in place to ensure any global network requirements are satisfied.

Entities Protected: This technique helps mask the identities of systems inside of a network.
By changing the information associated with systems, information collected by attackers would be
constantly shifting.

Deployment: This would be deployed on all devices capable of routing network traffic and
wish to participate in this technique.

Execution Overhead:
e None

Memory Overhead:
e None

Network Overhead:

e There may be unknown, but significant overload of network infrastructure including routers
and switches
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e The extra routing overhead may break the network infrastructure
Hardware Cost:

e None
Modification Costs:

O Data

0 Source Code

O Compiler/Linker
X Operating System
] Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

0 Seamless
0 Simple Configuration
X Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

X Reconnaissance
X Access

0 Exploit Development

253



O Attack Launch

[ Persistence

Interdependencies: This technique can be combined with other network-based detection and
monitoring systems.

Weaknesses: One potential weakness of this technique would be if an attacker could still attack
the original IP address of the machine since it does not change. Another possible weakness is if the
IP address information does not change fast enough. An attacker could do enough reconnaissance
to figure out what they need then launch their attack before the change happens. In addition,
if any systems are using a Domain Name System (DNS) address, this will be updated with the
IP addresses and an attacker could target a machine via that address. More importantly, this
technique only protects reachability. It does not provide any protection against client-side attacks
(e.g., browsing to a malicious website).

Types of Weaknesses:

X Overcome Movement
X Predict Movement
X Limit Movement

X Disable Movement

Impact on Attackers: This technique could have varying levels of impact on an attacker depend-
ing on what the attacker is trying to accomplish. If an attacker is trying to disrupt the network, it
could make flooding attacks more difficult if they did not have access to DNS addresses. Since this
technique is not supposed to disrupt active connections, if an attacker can collect the information
they need before a switch and establish a connection to the system, they may not be as impacted
as much by this technique.

Availability: This is a research idea and was not implemented.

Additional Considerations: A technique like this could have impact on applications or services
that require constant connections or could disrupt current connections. More importantly, the
protection offered is very limited. It does not protect against client-side attacks. The technique
can also have severe scalability issues.

Proposed Research: Since this is a proposed idea, many aspects are still undefined. It is not clear
how the technique could be put in place such that it would not affect active connections or running
services. It is also not clear how to handle adding or remove systems from this network or how far
it would scale. It must also come up with a way to be fast enough to impact attackers while not
overloading the systems or network with the changes. Finally, how this needs to be implemented
into a system would need to be investigated as well. It is not clear how the underlying actual
network is protected if at all. If an attacker is still able to get in through the original network that
does not change then it defeats the purpose of this technique.
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Funding: Unknown
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6.6 DYNABONE
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Resource

Details: This technique [135] is designed to mitigate a specific type of resource attack known
as denial of service. It does this by dynamically rerouting network traffic away from virtual overlay
networks that are being flooded.

Description:

Details: Dynamic Backbone (DynaBone) is a technique that involves creating multiple inner
virtual overlay networks inside of a larger outer virtual overlay network. Each of the inner networks
can be using a different networking and routing protocol or hosting a different service to increase
diversity amongst them. Each host in the outer overlay network is not aware of the inner networks
giving the appearance of only one network. The entry points to these internal overlays have a
collection of sensors that monitor performance and possible attack traffic. Based on the conditions
of the networks, it decides which internal network to use. If an internal overlay is detected to
be under attack or is suffering performance issues, traffic can be routed through different overlays
(dynamic network aspect of DynaBone). This technique is built on top of X-Bone that is a dynamic
network overlay technique that allows multiple simultaneous virtual overlays to coexist. It allows
network topologies to be dynamically created and used by applications. Hosts and networking
devices can participate in multiple overlays. This can also be set up so various physical paths in
the network are unique to different overlays.

Entities Protected: This technique aims to protect the availability of services on a network.
Traffic can be dynamically rerouted or routed through multiple paths simultaneously.

Deployment: This would be deployed on all entities participating in the virtual network.

Execution Overhead:
e None

Memory Overhead:
e None

Network Overhead:

e Depending on the various networking and routing protocols that are being deployed with
this technique, they can add additional latency and reduce bandwidth. These can include
encryption and authentication protocols/algorithms.
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e The impact of additional routing and load on the network infrastructure is unknown.
Hardware Cost:

e None
Modification Costs:

O Data

0 Source Code

O Compiler/Linker
[J Operating System
] Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

0 Seamless
0 Simple Configuration
X Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

X Reconnaissance
X Access

0 Exploit Development
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O Attack Launch

O Persistence

Interdependencies: A good detection mechanism to detect when an overlay is under attack. This
technique assumes that attacks can be detected.

Weaknesses: The inner overlays may not be sufficiently disjoint and it could be the case that the
loss of certain hosts/networking devices/routes can severely affect the overall network. If the service
is not distributed, it is also possible for an attacker to take the service out by flooding the service
provider. Also this technique does not provide any protection against targeted attacks or data
leakage (exfiltration) attacks. This technique does not provide any protection against client-side
attacks.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
[0 Limit Movement

X Disable Movement

Impact on Attackers: This technique has varying levels of impact on an attacker depending on
the goals of the attacker. If an attacker is trying to take down a service by flooding hosts or network
infrastructure, this technique could make it more difficult for him. If an attacker were attempting
to take out a service via other means such as attacking the service directly, this technique would
be less effective.

Availability: This technique was prototyped by the authors but the code was not publicly released.

Additional Considerations: This technique is limited in the protection it provides. It does
not provide any protection after a host is reached. More importantly, it does not protect against
client-side attacks. In addition, this technique can severely impact functionality by limiting com-
munication.

Proposed Research: One idea for this technique is go combine it with techniques that also
increase the resiliency of the end service as well. This could include techniques that run multiple
instances of a service. This would increase the overall availability of the service by making it more
difficult for the attack to disrupt the network and the end service.

Funding: DARPA, Air Force Research Laboratory
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6.7 ARCSYNE
Defense Category: Dynamic Networkss
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Scanning and Resource

Details: This technique [136] helps mitigate scanning-related attacks by continually changing
Internet Protocol (IP) addresses. Hopping makes the life of the collected information limited. This
technique would also help mitigate some resource attacks related to denial of service (DoS) attacks.
It is presumed that the gateways do not have a global Domain Name System (DNS) address so an
attacker would need to target a large set of IP addresses simultaneously or constantly change the
target for a DoS attack to reach the target.

Description:

Details: Active Repositioning in Cyberspace for Synchronized Evasion (ARCSYNE) is an IP
address hopping technique implemented at Virtual Private Network (VPN) gateways. The function-
ality is implemented into the kernel of the gateway operating system. Each gateway participating
in the hopping shares a secret and a clocking mechanism. At each clock tick, the gateways compute
a new IP address based on the secret and the clock. Each gateway also computes what the other
gateway IP addresses will become. The IP hopping does not disrupt connections between gateways
including streaming services. In order to account for packets that are delivered shortly after an
IP address change, the gateways can still accept those packets up to a grace period. This grace
period should be approximately equal to the time it takes for one packet to go from one gateway
to another. This technique has been tested with a large number of standard network protocols and
services.

Entities Protected: This technique aims to protect the discoverability and reachability of
the VPN gateways between networks. The presumptions is that if an attacker cannot locate and
reach a gateway before the IP hopping takes place, they will not be able to launch an effective
attack against that gateway or the systems behind that gateway.

Deployment: This technique would be deployed on the VPN gateways in a network. Clients
that are operating within this private network should not need to be modified.

Execution Overhead:
e None

Memory Overhead:
e None

Network Overhead:
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e Changing the address information in packets may have an impact on the delivery times.
Hardware Cost:

e None
Modification Costs:

O Data

0 Source Code

O Compiler/Linker
X Operating System
] Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
X Simple Configuration
O Complex Configuration (System Admin)

O Expert Operator
Kill-Chain Phases:

X Reconnaissance
X Access

0 Exploit Development
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O Attack Launch

[ Persistence

Interdependencies: The method for deriving and delivering the shared secret is secure.

Weaknesses: One weakness of this technique would be having an insufficiently large pool of IP
addresses to use for hopping. If the pool is too small, an attacker could focus more on the limited
addresses or be able to predict which addresses will be next with better accuracy. In addition,
this would give an attacker with adequate resources the ability to launch DoS type attacks against
the entire limited address space cutting off communication at that gateway. If it is possible for an
address to be chosen twice or more in a row due to the random selection, it might give an attacker
larger windows to mount an attack. If the systems that are part of the VPN are also part of a
local network, it may be possible for an attacker to compromise a system within that local network
and then launch an attack on the systems that are part of the VPN directly. This technique is
also not effective if an attacker is able to locate the target and mount an attack before the hopping
takes place. If an attacker can analyze traffic, he or she may be able to use other aspects of the
network traffic besides the address to determine where the current targets are located. In fact,
the protection offered by this technique is only based on limited reachability. For example, this
technique provides no protection against client-side attacks (e.g., browsing to a malicious website).

Types of Weaknesses:

X Overcome Movement
X Predict Movement
X Limit Movement

X Disable Movement

Impact on Attackers: This technique increases the amount of work an attacker has to do to
discover the targets if he is using IP scans. An attacker would need to scan random IP addresses
in order to discover target that is constantly changing addresses as opposed to scanning for a
fixed host then mounting an attack. However, this technique does not provide any protection
against an adversary that can reach a host using higher-level protocol information (web browsing
or application-level communication).

Availability: This technique is being prototyped and tested by the Air Force Research Laboratory
as a proof-of-concept but does not appear to be publicly available at this time.

A similar commercial product is available from Invicta: http://www.invictanetworks.net

Another similar commercial product is available from Telecordia: http://www.telcordia.
com

Another commercial product that combines a similar IP-hopping technique with multi-factor
authentication and role-based access control is available from Cryptonite: http://www.cryptonitenxt.
com [137]
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Additional Considerations: The protection only focuses on masking IP addresses. Note that a
host can be reached by many other means: browsing to a website, application-level communication,
P2P traffic, etc. The limitations imposed by the technique and the functionality impacts may
outweigh the protection offered.

Proposed Research: This technique might offer more protection if it was implemented on indi-
vidual systems as opposed to at the gateways. This would help protect against any scanning or
attacks that are targeting the participants in the VPNs directly. Additional randomization of pro-
tocol fields or the inclusion of dummy traffic might also offer more protection for attackers that are
able to perform traffic analysis. However, implementing at the level of individual hosts significantly
increase the overhead.

Funding: Air Force Research Laboratory
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6.8 RANDOM HOST MUTATION
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:

Attack Techniques Mitigated: Scanning

Details: This technique is designed to make a host untraceable by network scanning in order
to mitigate reconnaissance attacks that reveal the IP addresses of a host. It does not stop any
specific attacks. While the technique is in use, the host address information gained by an attacker
performing network scanning would change over time and have limited value as the technique
changes the routable IP addresses of hosts.

Description:

Details: Random Host Mutation (RHM) [138] is a technique that involves changing the
routable IP addresses of systems frequently. RHM keeps the real IP addresses (rIP) of end hosts
unchanged and creates for these hosts routable virtual IP addresses (vIP) that are short-lived
and changed randomly, consistently, and synchronously in the network. Only at the network edges
(subnet) close to the destination is a vIP address translated into the rIP address by a special gateway
(MTG). Hosts with changing vIP addresses are reachable by hostnames that are translated by the
Domain Name System (DNS) service into rIP addresses, then the MTG translates these to vIP
addresses before providing them to the source hosts. Alternately, one host can access another using
its rIP address; in that case, the MTG requests authorization from a controller (MTC) and provides
the routable vIP of the destination host if access is allowed. During address mutation, sessions are
maintained because RHM allocates and reserves new addresses for hosts until their existing flows
are terminated.

Adaptations of the technique include using OpenFlow virtual switches [139] or TAP virtual
network kernel devices [140] to provide address mapping.

Entities Protected: This technique helps mask the identity of end hosts from information
collection and targeted attacks.

Deployment: This technique would generally be implemented in segments of a local area
network (LAN).

Execution Overhead:
e None

Memory Overhead:
e None

Network Overhead:
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e Address-space overhead caused by assigning endpoints multiple vIPs in order to maintain
sessions during mutation. The faster the mutation rate, the higher the overhead.

e Routing-update overhead is proportional to the routing-table size after each coarse-grained
mutation interval.

Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

O Compiler/Linker
[0 Operating System
0 Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

[ Seamless
[J Simple Configuration
X Complex Configuration (System Admin)

0 Expert Operator
Kill-Chain Phases:

X Reconnaissance
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X Access
U Exploit Development
O Attack Launch

[ Persistence

Interdependencies: This technique can be combined with other network-based detection and
monitoring systems.

Weaknesses: It is possible there may be not enough IP address space to support the desired level
of movement. Configuring the RHM system may be difficult, since hosts have configurable security
levels that affect their mutation rates, and misconfiguring these could lead to high address space
overhead or routing overhead. Another possible weakness is if the vIP address information does
not change fast enough, perhaps due to misconfiguration, allowing an attacker to do reconnaissance
and launch an attack before the change happens. In addition, the technique provides no protection
if an attacker has the DNS name for their target and can therefore get the current vIP address
of the target from the MTG. This technique does not provide any protection against client-side
attacks (e.g., browsing a malicious website).

Types of Weaknesses:

X Overcome Movement
O Predict Movement
X Limit Movement

X Disable Movement

Impact on Attackers: This technique could have varying levels of impact on an attacker depend-
ing on what the attacker is trying to accomplish. If an attacker is trying to disrupt the network, it
could make flooding attacks more difficult if they do not have access to DNS addresses.

Availability: The authors have prototyped the system and evaluated it on a small university
network and with simulation. It is not publicly released.

Additional Considerations: This technique could have scalability issues related to address-space
overhead when the security requirements for hosts are high.

Proposed Research: This technique could be deployed in concert with other moving target
techniques; in [138], the authors evaluate it in isolation, and only focus on evaluating the overhead
and the effectiveness of slowing down routing-worm propagation. The reliability and security of
the RHM architecture itself were not studied.

Funding: Unknown
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6.9 OPENFLOW RANDOM HOST MUTATION
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Scanning

Details: This technique [139], which is related to [138], was designed to make hosts in an
OpenFlow software-defined network (SDN) untraceable by network scanning in order to mitigate
reconnaissance attacks that reveal the IP addresses of hosts. It does not stop any specific attacks.
While the technique is in use, the host address information gained by an attacker performing
network scanning would change over time and have limited value as the technique changes the
routable IP addresses of hosts.

Description:

Details: OpenFlow Random Host Mutation (OF-RHM) is a technique that involves changing
the routable Internet Protocol (IP) addresses of systems frequently. It is a variation of RHM [138],
which keeps the real IP addresses (rIP) of end hosts unchanged and creates for these hosts routable
virtual IP addresses (vIP) that are short-lived and changed randomly, consistently, and syn-
chronously in the network. Essentially, OF-RHM uses OpenFlow switches (OF-switches) as the
RHM gateways and the OpenFlow controller (OF-controller) as the RHM controller. In OF-RHM,
the OF-switch translates vIP addresses to rIP addresses as specified by an OF-controller. The
other tasks of the OF-controller in OF-RHM include 1) coordinating vIP mutations across switches
using OpenFlow messages, 2) handling DNS updates, 3) choosing the new address space for end
host vIP mutations, and 4) installing flow rules and actions in the OF-switches that support the
RHM behavior.

New flows to DNS-named hosts reach the controller, which modifies the DNS response to use
the vIP for the destination and sets the DNS TTL to be very small. When the flow is initiated,
the OF-switch sends the controller the initial packet, and the controller installs flow rules in the
switches in front of the source and destination OF-switches. These rules translate between the rIP
address and vIP address at the endpoints; all other switches in the path just route the flow based
on vIP addresses.

As in RHM, authorized users can also reach a host using its rIP address if they have it. In
this case, when the new flow starts, the controller gets the initial packet and must decide whether
the user is authorized to access the host via its rIP. If authorized, the controller installs rIP-vIP
translation rules along the route. During address mutation, flows are maintained because rules will
not be evicted from the OF-switch while they are in use. Flow rules with old addresses eventually
expire and are evicted from OF-switches. After a host’s vIP address mutates, the controller begins
installing flow rules with the new address as it gets new packet-in messages for the flow from the
OF-switches.
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Entities Protected: This technique helps mask the identity of end hosts from information
collection and targeted attacks.

Deployment: This technique would generally be implemented in segments of a local area
network (LAN) with OF-switches at the edges.

Execution Overhead:
e None

Memory Overhead:
e None

Network Overhead:

e Address-space overhead caused by assigning endpoints multiple vIPs while flows are main-
tained. The faster the mutation rate, the higher the overhead.

e Flow-table size overhead (number of rules) on a OF-switch is related to the address-mutation
rate, the number of hosts on the switch, and the rate at which flows terminate.

Hardware Cost:
e None
Modification Costs:

0O Data

O Source Code

O Compiler/Linker
0 Operating System
0 Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer

O Complex Configuration (System Admin)
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X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

O Seamless
O Simple Configuration
X Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

X Reconnaissance

X Access

0 Exploit Development
[J Attack Launch

[ Persistence

Interdependencies: This technique depends on having OpenFlow-enabled switches in the network
in front of the hosts that will be protected.

Weaknesses: It is possible there may not be enough IP address space to support the desired level
of movement. Configuring the OF-RHM controller may be difficult, since individual end hosts can
have configurable security levels that affect their mutation rates, and misconfiguring these could
lead to high address space overhead or flow-table size overhead. Another possible weakness is if
the vIP address information does not change fast enough, perhaps due to misconfiguration or very
lengthy flows that keep rules alive on switches longer than expected. In this case, an attacker could
do reconnaissance and launch an attack before the change happens. In addition, the technique
provides no protection if an attacker has the DNS name for their target and can therefore get valid
flows to the destination installed in the network. This technique does not provide any protection
against client-side attacks (e.g., browsing a malicious website).

Types of Weaknesses:

X Overcome Movement
O Predict Movement

X Limit Movement
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X Disable Movement

Impact on Attackers: This technique could have varying levels of impact on an attacker depend-
ing on what the attacker is trying to accomplish. If an attacker is trying to disrupt the network, it
could make flooding attacks more difficult if they do not have access to DNS addresses.

Availability: The authors have prototyped the system and evaluated it a Mininet simulation. The
implementation is not publicly released.

Additional Considerations: This technique could have scalability issues related to address space
overhead and flow table size when the security requirements for hosts are high.

Proposed Research: This technique could be evaluated and deployed in concert with other
moving target techniques. It is not clear whether the technique could be seamlessly deployed
into existing SDN networks that are running other controller applications without interfering with
those, or whether the flow-table size overhead would significantly affect the flow initiation speed.
The evaluation performed in [139] focuses on the effectiveness of OF-RHM against external scanning
and target discovery by worms, but evaluating the defense’s protection against other attack models
like distributed denial of service (DDoS) would be helpful, as the authors note.

Funding: Unknown
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6.10 SPATIO-TEMPORAL ADDRESS MUTATION
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Scanning

Details: This technique is designed to mitigate reconnaissance attacks that reveal the IP
addresses of hosts by scanning. It does not stop any specific attacks. While the technique is in
use, the host-IP binding information of any given destination host changes in two ways: it varies
depending on the source host (“spatial”) and the time (“temporal”). Therefore, even attackers who
can quickly perform scanning cannot exploit reaching those addresses from any source host.

Description:

Details: This technique [141] works by varying the host-IP bindings dynamically based on
the location of other hosts trying to use any given IP and the time at which the IP is used. The goal
is to add an extra dimension of dynamicity in host-IP bindings compared to other time-dynamics-
only IP-hopping techniques, like Random Host Mutation (RHM) [138]. Using the technique, the
real IPs do not change, and the host platforms require no changes. Instead, at any point in time,
each host maintains a set of ephemeral IPs (eIPs) by which they can address each other host. The
elP that host A uses to reach host B is valid only during a changing time interval, and other hosts
cannot use that elP to reach B even when it is valid for A.

Like RHM, spatio-temporal mutation uses a controller to compute new mappings and it uses
gateways that translate between real IPs and eIPs. The controller has the full view of the network.
The gateway of the subnet where DNS is located is in charge of modifying each DNS reply to
replace the real IP with the chosen elP, and replace the DNS TTL with the chosen randomization
interval length.

Two strategies are used to determine the appropriate eIP bindings:

1. Random mutation, which involves selecting an address from the unused address space by
sampling a uniform distribution, and

2. Deceptive mutation, which constructs bindings to deceive the adversary, e.g., to assign poten-
tially unattractive elPs to potentially attactive or vulnerable hosts. Intuitively, an eIP might
be unattractive to a host H if it is possible the host at that eIP has already been reached
from H. The technique can compute this using the real network topology.

The deceptive mutation strategy costs more in overhead compared to random mutation, but the
authors argue that it is more difficult for persistent attackers to overcome it. Therefore, the tech-
nique uses deceptive mutation when it detects signs of a scanning attack, and random mutation
otherwise. The detection indicator is an abnormal increase in the size of connected components in
the network communication graph during a time interval. In other words, if hosts are communi-
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cating with each other more than normal during a period of time, that could be a sign of an attack
like worm propagation, so the more aggressive mutation scheme is used.

Entities Protected: This technique helps mask the identity of end hosts from information
collection and targeted attacks.

Deployment: This technique would generally be implemented in segments of a local area
network (LAN). It could be deployed in a software-defined network (SDN), where the mutation
controller doubles as the OpenFlow controller and the gateways are OpenFlow switches, similar to
OpenFlow Random Host Mutation [139].

Execution Overhead:

e Execution overhead on the controller for computing the deceptive or random mutations after
each interval. See [141] for the full time-complexity analysis. Empirical overhead measure-
ments are not presented.

Memory Overhead:
e None
Network Overhead:

e Address space overhead caused by assigning endpoints to multiple eIPs in order to maintain
sessions during mutation. The faster the mutation rate, the higher the overhead.

e DNS traffic overhead related to spatial mutation. Temporal mutation forces all clients to
renew elP mappings by querying the authoritative DNS service at shorter than usual intervals.

Hardware Cost:
e None
Modification Costs:

0O Data

O Source Code

O Compiler/Linker
[J Operating System
0 Hardware

X Infrastructure
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Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
0 Simple Configuration
O Complex Configuration (System Admin)

[J Expert Operator
Kill-Chain Phases:

X Reconnaissance

X Access

[ Exploit Development
O Attack Launch

[ Persistence

Interdependencies: This technique can potentially be combined with other network and endpoint
monitoring tools. It assumes that the control plane (e.g., controller, DNS) is not the target of attack.

Weaknesses: There is some chance that an attacker can overcome the temporal mutation and
spatial mutation by quickly performing reconnaissance and launching an attack from the same host.
Like RHM, it is also possible there may be not enough IP address space to support the desired level
of movement. Attacks on the DNS service or controller could disable the movement by slowing
down or stopping the eIP binding refresh. This technique does not provide any protection against
client-side attacks (e.g., browsing a malicious website).

Types of Weaknesses:

X Overcome Movement

O Predict Movement
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X Limit Movement

X Disable Movement

Impact on Attackers: Reconnaissance attacks will generally be slowed down by this technique,
and the information gained might have limited or no value depending on when it is used and from
which foothold host. A persistent adversary might try scanning frequently and from each host
she is able to target and reach, but that increases her chance of being detected (and increases
the likelihood that the technique selects the deceptive mutation strategy, which is more difficult
to overcome). Spatial mutation mitigates honeynet mapping attacks, because an eIP can appear
either used or unused depending on the source host.

Availability: The authors prototyped the technique using an OpenFlow network and evaluated it
using Mininet. The implementation is not publicly available.

Additional Considerations: None

Proposed Research: The technique has been evaluated in a mostly theoretical way, e.g., decep-
tion and detectability metrics defined by the authors are evaluated as other configurable variables,
like address-space size, change. A next step is performing an end-to-end study of the overhead
and security impact of a realistic deployment. In particular, evaluating whether the spatial muta-
tion aspect of elPs is worth the added overhead, compared to only temporal mutation, would be
interesting (i.e., head-to-head comparison with RHM).

Funding: NSF
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6.11 AVANT-GUARD
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Resource

Details: This technique includes a function that can restrict flows based on events that are
triggered by traffic dynamics. While the technique is in use, attacks like denial of service (DoS)
that flood a targeted server could be interrupted.

Description:

Details: AVANT-GUARD [142] is a software-defined networking (SDN) technique that in-
cludes two security functions: 1) connection migration, which defends against control-plane satura-
tion attacks, and 2) actuating triggers, which dynamically activates flow rules on the the data plane
in response to traffic dynamics that might indicate an attack or disrupt targets on the network. The
latter, actuating triggers, may be considered a moving target defense because flows can be affected
by rules that are dynamically activated under conditions that are unknown to the attacker.

Actuating triggers in AVANT-GUARD are implemented using new extensions to the Open-
Flow protocol and using a modified data plane. The control plane defines conditions and reg-
isters them with rules in the data plane. Whenever the data plane receives a packet, it runs a
trigger-evaluation function added by AVANT-GUARD. Three types of conditions are supported:
1) payload-based, which uses a 1-bit condition (flag) that indicates whether to send payloads from
the matched flow to the control plane; 2) traffic-rate-based, which uses a 22-bit condition that
specifies the traffic rate (i.e., packets per second [PPS], bits per second [BPS], or raw count), a
comparator, and a value to compare the current rate against, and reports the network status to
the control plane when triggered; and 3) rule-activation, which is similar to the traffic-rate-based
type but activates a rule stored on the data plane when triggered (e.g., to block a flow with heavy
traffic without having to transact with the control plane).

Entities Protected: This technique helps protect endpoints in the network from DoS or
other resource attacks by using traffic-rate triggers. It can also be used to report traffic status or
payloads from targeted flows for use in other control plane security tools, e.g., ones that detect
distributed denial of service (DDoS) attacks or malicious payloads.

Deployment: This technique can be deployed to SDNs using OpenFlow software switches,
or implemented with modifications to hardware OpenFlow switches.

Execution Overhead:
e Evaluating conditions adds minor execution overhead on the data plane. The payload-based
condition checks one bit and has virtually no overhead. In [142], the authors found that the

traffic-reporting condition added 0.322 us to a flow and rule activation added 1.697 us in their
experiments.
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Memory Overhead:

e The technique needs additional TCAM or SRAM storage on the data plane for stored rules
that get activated by triggers.

Network Overhead:

e If conditions on the data plane trigger communications with the control plane—through pay-
load delivery or trigger reporting—there may be network overhead.

Hardware Cost:
e SDN control and data planes, if not already installed.
Modification Costs:

U Data

X Source Code

O Compiler/Linker
[J Operating System
X Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration

O Complex Configuration (System Admin)
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O Expert Operator
Kill-Chain Phases:

[ Reconnaissance

[0 Access

0 Exploit Development
X Attack Launch

O Persistence

Interdependencies: This technique is dependent on having an SDN infrastructure. The control
plane is assumed to be able to define and register conditions using the extended OpenFlow protocol.
The network-status reporting trigger could be used by other tools running on the control plane as
a timely alternative to those tools that poll the data plane for flow statistics.

Weaknesses: One weakness of this technique is that the conditions supported for dynamic rule
activation are limited to rates that can be computed efficiently on the data plane (e.g., PPS,
BPS). There is also the need for additional switch memory in the data plane (TCAM or SRAM),
which could be expensive. While it may be possible to share the existing TCAM or SRAM in an
OpenFlow switch, this might limit the number of flow rules that could be installed, especially if
the control plane is pushing rules using applications in addition to AVANT-GUARD. It is possible
that could limit the ability of flow rules to change dynamically. It is also possible that an attacker
could infer some conditions for the rule-activation triggers by monitoring his own traffic statistics,
predict when rules will activate, then operate in a way that does not trigger the rule activation. In
this case, some attacks might succeed if conditions that block flows are not aggressive enough.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
X Limit Movement

0 Disable Movement

Impact on Attackers: This technique makes it difficult for attackers to perform some attacks,
like DoS attacks, that result in abnormal flow-traffic statistics. As noted above, an attacker may
be able to succeed in a DoS attack depending on factors like the trigger thresholds, behavior of the
target service, and whether some reconnaissance is possible. This technique alone does not prevent
an attacker from sending a malicious payload in a flow that stays below the traffic-rate trigger
conditions, though its payload trigger could be used to complement other defenses on the control
plane that perform packet inspection.
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Availability: The authors have prototyped the system using a software OpenFlow data plane.
The prototype is not publicly released.

Additional Considerations: The technique requires extending the OpenFlow protocol (e.g.,
adding a “trigger” message sent from the data plane to the control plane), and modifying both the
control plane and the data plane. The protection does not include network access control, only
statistics-based rule activation and signaling to the control plane. Scalability may be an issue for the
flow-table memory. Also, the control plane must handle the security /usability tradeoff when using
rule-activation triggers; aggressive conditions can result in false-positive activations and weaker
ones might allow attacks to succeed. It is possible that legitimate flows could trigger rules that
interrupt these flows.

Proposed Research: Combining this with other network technologies or control-plane analytics
could improve the protection it offers. For example, traffic-rate conditions could be determined by
the control plane based on automated testing of the services in the network and their ability to
handle traffic. In addition, the technique has not been evaluated empirically as a hardware-based
implementation, which would provide insight about the feasibility of the method.

Funding: DARPA, United States Air Force
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6.12 IDENTITY VIRTUALIZATION FOR MANETS
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Scanning, Spoofing, Resource

Details: This technique is aimed at re-randomizing virtual node identities in a mobile ad-
hoc network (MANET) and updating these identities in the network in a decentralized way. This
can make scanning difficult and prevent spoofing of messages, since legitimate nodes authenticate
senders cryptographically.

Description:

Details: This technique [143] protects MANETS against scanning and attacks that target
nodes using their identities (e.g., real IP addresses in a traditional network). Each node maintains
a virtual ID at any point in time that is associated with its real ID. Only virtual IDs are used
for addressing in legitimate communications; they are translated into real IDs using a translation
service with which the network layer is augmented. In order to avoid attackers scanning and
utilizing the virtual IDs, nodes change their virtual IDs at a node-specific validity interval, then
send updates that other legitimate nodes can verify using a special update protocol.

Generating virtual IDs and translating them is done in a decentralized network using cryp-
tographic hashes. It is assumed that legitimate nodes have two shared secrets that are used 1)
to encrypt join/leave request packets so that they cannot be spoofed by illegitimate nodes, and
2) to generate virtual IDs via hash chains that other legitimate nodes can authenticate. When a
node changes its virtual ID by selecting the next hash in its chain, it broadcasts its new virtual 1D
alongside with the index of that ID in its own hash chain. Other legitimate nodes in the network
can use this, with the shared secret and hash function, to determine which real ID the update
corresponds to before updating their own translation tables with this mapping.

Entities Protected: This technique helps protect nodes from scanning and spoofing attacks
from external nodes, and protects the network from routing attacks like flooding and blackholes.

Deployment: This technique is deployed on nodes in a MANET.

Execution Overhead:
e None

Memory Overhead:
e None

Network Overhead:
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e Updating a single node’s virtual ID across the MANET causes overhead at each other node.

e Packet loss increases with the frequency of node ID updates.
Hardware Cost:

e None
Modification Costs:

O Data

O Source Code

O Compiler/Linker
[J Operating System
00 Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)
Expertise Required to Operate:

X Seamless
X Simple Configuration
O Complex Configuration (System Admin)

U Expert Operator
Kill-Chain Phases:

X Reconnaissance

X Access
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O Exploit Development
O Attack Launch

O Persistence

Interdependencies: The technique assumes that shared secrets are securely distributed to legit-
imate nodes.

Weaknesses: A major weakness is that network performance (e.g., well-formed packets delivered
as expected between legitimate nodes) degrades badly as the network scales in the number nodes or
when the frequency at which nodes change virtual IDs increases. Mitigating this means weakening
the security by reducing the frequency, but if the frequency is too low, attackers could spoof
messages or perform attacks like route invalidation using overheard IDs that temporarily remain
valid. This technique provides no protection against attacks by insiders, who could send malicious
payloads, spoof messages from other legitimate nodes, or perform routing or join-/leave-request
forgery attacks.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
O Limit Movement

O Disable Movement

Impact on Attackers: Attackers may be able to learn the virtual IDs of nodes while they are
still valid and use them for some attacks. The technique makes this more difficult by providing
protocols that let nodes change IDs over time and securely update others about the change. The
technique does not protect against side-channel attacks, malicious insiders, or brute-force attacks
against the cryptographic mechanisms.

Availability: The authors prototyped the defense in the NS-2 simulator. It is not publicly released.

Additional Considerations: The technique requires configuration of the validity interval that
nodes use to mutate their virtual IDs. Performance in the network downgrades rapidly if the update
frequency is too high. On the other hand, the protection provided by the technique is weaker when
the frequency is lower. For the threat model considered, nodes that join the network are assumed
to be legitimate if and only if they hold the shared secrets required by the network, which must be
distributed securely.

Proposed Research: More research could be done to evaluate the technique beyond its effect on
network performance. For example, it would be helpful to know how security measures improve or
decrease in response to changing the update frequency on nodes or the total number of nodes in
the network.

Funding: Unknown
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6.13 MORPHING COMMUNICATIONS OF CYBER-PHYSICAL SYSTEMS
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Scanning

Details: This technique is aimed at preventing traffic analysis attacks on network sessions of
a cyber-physical system (CPS). It provides an algorithm to distribute packets over multiple sessions
such that the sessions appear to have target traflic-statistic distributions that are indistinguishable
from background internet traffic, while meeting deadline requirements for packets.

Description:

Details: This technique [144] protects a CPS from having its network sessions identified by
an attacker via a traffic analysis attack. This is useful because CPSs are widely deployed and a
significant portion of their traffic may be relayed through existing shared infrastructure. While
CPS traffic is typically encrypted, it may still be vulnerable to traffic analysis that lets an attacker
eavesdrop and identify sessions based on timing side channels like the inter-packet delay (IPD),
which may be characteristic of the system (e.g., a controller and sensor or actuator communicating
at intervals). Other traffic obfuscation algorithms exist, but current approaches are likely to violate
the delivery-time requirements that CPSs often have, so this technique directly incorporates these
requirements into the algorithm.

The technique provides an algorithm called CPSMorph that distributes packets into sessions
in order to best match the IPD distributions of random sessions in the background while meeting
sending-deadline requirements for packets. Redundant packets are delivered to help form the desired
distributions, adding overhead to the network traffic. The algorithm tries to minimize this overhead
while respecting the constraints on message delivery time and each session’s traffic profile converging
to its target distribution. Its authors consider CPSMorph a moving-target defense because it makes
active sessions belonging to the CPS “moving targets” that nondeterministically change their traffic
profiles and cannot easily be classified as distinct from other sessions in the background.

Entities Protected: This technique helps protect network sessions from being identified as
belonging to the CPS via IPD-based traffic analysis attacks.

Deployment: This technique is intended for deployment at agents in a CPS that run the
algorithm and communicate across shared infrastructure.

Execution Overhead:
e CPS agents executing the send routine. Execution overhead is not reported.
Memory Overhead:

e CPS agents may create multiple active sessions to distribute the messages.
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Network Overhead:

o Redundant packets are used to disguise session statistics. The technique’s authors found on
average 51.84% of packets sent were redundant in their experiments.

Hardware Cost:
e None
Modification Costs:

0 Data

X Source Code

O Compiler/Linker
[0 Operating System
0 Hardware

O Infrastructure

Source code on the CPS agents may need to be modified to implement CPSMorph, e.g., to expose
message deadlines to the algorithm.

Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

[J Expert Operator

Kill-Chain Phases:
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X Reconnaissance

O Access

[ Exploit Development
[0 Attack Launch

[ Persistence

Interdependencies: The technique assumes that the network delivery delay can be measured
accurately and used as an argument in the algorithm.

Weaknesses: The defense provides no protection outside its threat model of traffic-analysis at-
tacks. It only focuses on first-order distributions of IPDs, but other analyses of the traffic might
identify the CPS, which could let an attacker overcome the movement in CPSMorph. If the CPS
allows for little or no delay when a message is sent, then the overhead gets worse because more
active sessions may be created to distribute the packets. Furthermore, the technique does not de-
fend against malicious data sent to the CPS, or protect CPS components from other attacks (e.g.,
physical attacks on sensors, active attacks on the relay network). If an attacker can compromise
communications in one CPS agent using one of these other attacks, they could disable movement
or change the algorithm so that session IPD distributions are identifiable by traffic analysis.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
X Limit Movement

X Disable Movement

Impact on Attackers: The technique makes it more difficult for an attacker to identify CPS
sessions using IPD-distribution analysis on eavesdropped traffic. This type of attack can already
fail without CPSMorph depending on the characteristics of the CPS, so the impact of the defense
is limited.

Availability: The authors implemented the algorithm and evaluated it using simulation. Pseu-

docode is given in [144]. The implementation is not publicly available.

Additional Considerations: The technique has very limited protection at the cost of significant
network overhead. CPSMorph may not be suitable for CPSs with constrained resources or with
strict performance requirements (i.e., little flexibility in how long messages can be delayed).

Proposed Research: More research could be done to evaluate the technique under real conditions.
It is not clear how the number of active sessions that CPSMorph creates scales with message-
deadline requirements that are typical for real CPSs. It would also be interesting to evaluate
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the technique factoring in uncertainty around the expected network-delivery delay, e.g., using a
distribution instead of a single estimate in the algorithm.

Funding: Unknown
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6.14 CLOUD-ENABLED DDOS DEFENSE
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Resource, Scanning

Details: This technique [145] defends against distributed denial-of-service (DDoS) attacks,
particularly aimed at Internet services. It uses selective server replication in an elastic cloud to
shuffle clients from attacked servers into newly instantiated server replicas that have new network
locations, known only to the clients migrated to them. The attack model assumes a botnet and two
types of bots participating in the DDoS attack: naive bots that do not follow the “moving target”
server replicas automatically, and persistent bots that can follow the moving replicas autonomously
with the benign clients. Naive bots are undermined immediately by the server shuffle, and persistent
bots that follow replicas are identified and separated using an intelligent client assignment and
tracking scheme during the shuffie.

Description:

Details: This technique works by shuffling clients from a server under a DDoS attack onto
newly instantiated server replicas, and coordinating to maintain service for benign clients while
identifying and isolating malicious ones. A client trying to access the protected service goes through
the following steps. First, a DNS server directs the client to a cloud domain containing the DDoS
defense. Second, the client is directed to a replica server within that cloud by a load balancer,
which keeps track of active client/server connections in the cloud domain and tells the assigned
replica to whitelist the IP address of the client. Third, the replica server provides the requested
service to the client. A centralized coordination server maintains global client/server bindings and
coordinates the response to detected DDoS attacks over a dedicated command-and-control channel.

When a DDoS attack is detected, the coordination server triggers the shuffling mechanism, in
which clients from attacked servers are shuffled to new server replicas. The scheme for reassigning
clients is the output of a greedy algorithm run on the coordination server that maximizes the
expected number of benign clients that will be saved in the shuffling round. The algorithm is
greedy because it finds the optimal assignment to each new replica server, one target replica at a
time, rather than solving the global problem. The shuffling rounds terminate when there is only
one available replica left to consider, and it gets all remaining clients assigned to it. Algorithmic
details for the greedy algorithm and an optimal one — which is not deployable for real-time use due
to its time complexity — are described in [145].

A technique developed after [145] uses a similar reactive migration mechanism for VMs within
a cloud and combines it with proactive migration, based on the likelihood of a VM becoming
attacked [146]. The proactive part of this approach depends on an optimization using parameters
that are very difficult to measure or estimate accurately in practice (e.g., the expected attack
frequency and idle-period frequency for each VM). Using the proactive scheme with inaccurate
inputs could cause a VM to migrate too frequently (creating significant network overhead) or too
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infrequently (creating some overhead with little or no security benefit). For these reasons, the
proactive mechanism in [146] is not recommended for use outside experimental testbeds.

Entities Protected: This technique helps protect cloud servers from DDoS attacks that
interrupt services for benign clients.

Deployment: This technique is intended for deployment on servers inside a cloud with elastic
resources (i.e., to provision and replicate servers on demand).

Execution Overhead:

e An optimization problem is solved on the centralized coordination server before shuffling.
The time complexity of the greedy algorithm is O(N - M), where N is the total number of
clients (benign or bots) and M is the number of persistent bots.

e Performing the redirection during server migration (i.e., moving clients from an attacked
server or to new instances) takes time. The authors found that reassigning 60 clients took
just under 5 seconds.

Memory Overhead:

e The space complexity of the greedy algorithm is O(P), where P is the number of replicas
that participate in the shuffling operation.

Network Overhead:

e Client redirection overhead during shuffle.
Hardware Cost:

e Cost to provision new replica servers in the cloud.
Modification Costs:

0 Data

O Source Code

O Compiler/Linker
[0 Operating System
0 Hardware

X Infrastructure
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Some additional modification may be needed for servers to whitelist client IP addresses as directed
by the coordination server.

Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)

Expertise with cloud infrastructure needed for provisioning resources as directed by the shuffling
mechanism.

Expertise Required to Operate:

X Seamless
0 Simple Configuration
O Complex Configuration (System Admin)

[0 Expert Operator
Kill-Chain Phases:

X Reconnaissance

0 Access

O Exploit Development
[0 Attack Launch

X Persistence

Interdependencies: The technique assumes that DNS servers are well provisioned and are not
attacked themselves. The authors assume the attack does not overwhelm the cloud infrastructure
itself (e.g., ability to create new replicas). In addition, the defense assumes that a reliable online
detector for DDoS attacks is available.

Weaknesses: The defense aims to maximize the number of benign clients that receive service
during a DDoS attack, but it is not guaranteed to protect service for all benign clients (and does
not in the authors’ experiments). So despite the moving-target server replicas, the movement can
be overcome at least partially by persistent bots. Movement is limited by the number of replica
servers available to the defense. The threat model assumes that the cloud infrastructure, DNS
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servers, and coordination server are not the targets of an attack, but compromising these could
disable movement.

Types of Weaknesses:

X Overcome Movement
O Predict Movement
X Limit Movement

X Disable Movement

Impact on Attackers: The technique makes it more difficult for an attacker to disrupt the
protected service to benign clients. In addition to the DDoS resource attack, scanning attacks
are mitigated somewhat because servers are replicated and clients may be migrated over time.
Therefore, reconnaissance information (particularly, information useful in building a DDoS hit list)
may have limited use. That said, the technique does not ensure that persistent bots will not disrupt
service to all benign clients. In fact, the authors found that in simulation, the number of shuffling
rounds to save 95% of benign clients is 40% higher than the number required to save 80% of benign
clients. Therefore, as protection approaches 100% the cost of using the technique increases sharply
and may be prohibitive.

Availability: The authors implemented the shuffling algorithms and evaluated the technique using
simulation. The implementation is not publicly available.

Additional Considerations: None

Proposed Research: The evaluation in [145] is very theoretical, so a practical evaluation in
which a deployed cloud service is targeted by a realistic DDoS attack would help demonstrate
its feasibility. Choosing testbed parameters related to resource constraints is important for this
defense. For example, if the defense can shuffle every client to its own replica server then the DDoS
attack would be fully isolated from benign clients, but that is probably too costly as services scale
up to more clients.

Funding: DARPA
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6.15 RECONNAISSANCE DECEPTION SYSTEM
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Scanning

Details: This technique [147] is designed to mitigate scanning attacks in a Software-Defined
Network (SDN). Malicious reconnaissance is often required for targeted resource attacks or for
advanced persistent threats (APTs) that establish persistence and spread laterally in the network.
In the threat model, the attacker is an adversary with a foothold on one or more hosts in the
network; these compromised hosts are unknown. The defense aims to slow down reconnaissance
enough to halt the attack, by identifying and isolating the source of the malicious reconnaissance,
before vulnerable hosts are discovered. Not included in the threat model are attacks against the
SDN controller or scanning attacks from outside the network, which is addressed by firewalls or
intrusion detection systems (IDS).

Description:

Details: Reconnaissance Deception System (RDS) is a system that simulates a virtual net-
work, which is the only view of the network exposed by insider reconnaissance (including topology,
locations of hosts, etc.). The goal of the RDS virtual network is to misinform the attacker as much
as possible during reconnaissance while causing minimal overhead for benign traffic. RDS performs
five maneuvers to achieve this:

1. Dynamic address translation. This maneuver uses packet-header rewriting to hide real host
addresses. This increases the search space for the scanner because the address space appears
much larger.

2. Route mutation. This maneuver uses virtual routers that simulate virtual multi-hop paths
that hide the real topology.

3. Vulnerable host placement. This maneuver uses the previous two maneuvers to simulate
virtual topologies and place hosts into virtual subnets.

4. Honeypot placement. This maneuver increases the virtual size of the network visible to an
attacker and provides decoys that are monitored.

5. Dynamic detection of malicious flows. This maneuver uses flow statistics from the SDN
switches.

With these techniques deployed, the authors found that RDS delayed malicious network scans up
to a factor of 115 by simulating very large virtual networks and strategically placing vulnerable
hosts a high “address distance” from the scanning source once it is identified.
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Legitimate services in the network could be deceived by the virtual-network views, so nodes
that depend on knowing the real network structure (e.g., running scheduling or load-balancing
algorithms, or network discovery services) must be identified by an operator and are handled as
special cases.

Entities Protected: This technique aims to protect hosts in the SDN from insider scanning
attackers.

Deployment: The technique is deployed in an SDN. Hosts are offered virtual-network views
associated with a DHCP lease when they connect to the network.

Execution Overhead:
e None

Memory Overhead:
e None

Network Overhead:

e The authors found the system increased response times on average 0.2 ms per packet flow.

e Generating and deploying a new virtual-network view takes on the order of seconds. If done
on demand in response to network events, like detected scanning, flows could have additional
latency as new views are deployed.

Hardware Cost:
e RDS servers and SDN infrastructure, if not already in place.
Modification Costs:

0O Data

0 Source Code

O Compiler/Linker
[J Operating System
0 Hardware

X Infrastructure

Expertise Required to Implement:
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O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

[0 Seamless
O Simple Configuration
X Complex Configuration (System Admin)

O Expert Operator

Servers that must know the legitimate network view in order to provide their service must be
identified by an operator. The system must be configured so that these nodes are not given the
deceptive virtual-network view.

Kill-Chain Phases:

X Reconnaissance

O Access

O Exploit Development
[0 Attack Launch

O Persistence

Interdependencies: RDS’s “dynamic detection of malicious flows” feature assumes that benign
network nodes are not probing the honeypots or random addresses. The whole technique is depen-
dent on a secured SDN control plane.

Weaknesses: Scanning to identify vulnerable hosts is slowed down by this technique, but it is not
guaranteed to prevent the attacker from succeeding. Reconnaissance missions that measure link
delay to map the network are not mitigated by this technique. Using the SDN control plane to
hold new flows and introduce artificial delays is possible, but this would add overhead to legitimate
flows and degrade network performance. Attacks against the SDN controller or RDS servers (i.e.,
deception server, virtual topology generator) could enable the attacker to learn the real network
topology, and limit or disable how or when virtual views change. There is some chance that the
attacker’s foothold host requires the real network view and has been configured to receive it, so
in that case RDS provides no protection. This technique does not provide any protection against
client-side attacks.
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Types of Weaknesses:

X Overcome Movement
X Predict Movement
X Limit Movement

X Disable Movement

Impact on Attackers: In general, this technique could slow down an insider reconnaissance
attack enough that it halts further attacks. Malicious flows from scanning (e.g., to honeypots that
should not have legitimate flows) might be detected and the source mitigated before the attack is
finished. However, there is some chance that the reconnaissance succeeds and an attack is launched
before the information is made obsolete by generating a new virtual view (because of its integration
with the DHCP lease, this might be on the order of hours).

Availability: This technique was prototyped by the authors. The open-source prototype is avail-
able online at: https://github.com/deceptionsystem/master.

Additional Considerations: This technique is limited in the protection it provides and adds
some latency to flows. The cost of deploying the SDN infrastructure (if it does not already exist)
could be high. RDS does not provide any protection if a vulnerable host is actually reached, and it
does not protect against client-side attacks. If the SDN is providing other network services on the
controller, those could potentially be affected by this technique.

Proposed Research: Combining this technique with a hardened SDN control plane would improve
its overall security. Another extension is to focus on the gaps in the network defense. The current
approach does not offer protection to nodes that run services requiring the real network view; if
any of these nodes is compromised, either by being identified quickly during the attack or if one is
an initial foothold, then the defense falls apart. There might be ways to have the control/deception
plane provide virtual information to these nodes that is crafted to allow nodes to compute correct
or correct-enough values without disclosing the real network.

Funding: Army Research Laboratory Cyber Security Collaborative Research Alliance
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6.16 PROVIDING DYNAMIC CONTROL TO PASSIVE NETWORK MONITOR-
ING

Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Resource, Scanning, Injection

Details: The threat model handled by the technique assumes that malicious hosts are in a
network and are trying to initiate network flows to further compromise the network or its endpoints.
The technique provides a means for passive monitoring systems, like an intrusion detection system
(IDS), to provide a prompt security response when it detects potentially malicious activity. Ex-
amples of responses that are possible include dynamic firewalls to block traffic; shunting flows
that are deemed benign to improve network performance and reduce IDS load; quarantining local
systems that are deemed potentially compromised by blocking all ingress and egress flows; and
quality-of-service responses that support traffic engineering. Attack techniques can be mitigated
as long as they are detectable by the monitoring tools used, e.g., scanning, resource attacks, and
sending malicious payloads.

Description:

Details: This technique presents a network control framework [148] that lets passive mon-
itoring systems actuate dynamic network access controls through a unified application program
interface (API). The authors build the system atop Bro, an IDS capable of monitoring and re-
sponding to the network traffic. When the monitoring system calls a function using the API,
response actions (listed above) are triggered by passing response rules to backends that are reg-
istered with the control framework and are capable of enforcing the actions. For example, an
OpenFlow controller in a software-defined network (SDN) might be registered as a backend ca-
pable of pushing enforcement rules down to the OpenFlow switches. In this case, quarantining
could be enforced by adding flow rules to the OpenFlow switches in front of the affected hosts
that drop flows originating from or destined for the hosts. Backends can be any device that can
accept response rules generated from API calls and enforce the actions in the network. In addition
to OpenFlow, the authors implemented two other backends: 1) an acld backend, which is a Unix
daemon that functions as a middle-man to firewall against IP addresses, address pairs, ports, etc.,
and 2) an IDS packet filter internal to Bro itself. When the API is called, backends are passed
the resulting response rule until either one can enforce it, or no backend is capable of enforcing
it. Protected machines on the network must register with backends and provide the information
needed to support enforcement.

Entities Protected: This technique protects the network from being attacked from com-
promised machines.

Deployment: This technique is intended for deployment on a network using passive moni-
toring systems and some backend(s) capable of enforcing dynamic access controls (e.g., OpenFlow
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infrastructure). The prototype framework is built on the Bro IDS. It must be deployed with at
least one type of backend in order to enforce the response action.

Execution Overhead:

e Virtually no overhead beyond using monitoring tools alone. API calls result in rules being
generated and handed off to the backends.

Memory Overhead:

e OpenFlow rules installed by an OpenFlow backend use memory in the switch tables; however,
this overhead is relatively small as long as IDS alerts are infrequent.

Network Overhead:

e Potential network service disruptions in response to false-positive API calls.
Hardware Cost:

e None
Modification Costs:

] Data

X Source Code

O Compiler/Linker
[0 Operating System
] Hardware

X Infrastructure

Backends and monitoring systems (e.g., Bro) may need to be modified in the source code to incor-
porate the framework API. Infrastructure components, like OpenFlow switches, must be in place
for the OpenFlow backend.

Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)

X Custom Programmer (General Knowledge)
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O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

[0 Seamless
O Simple Configuration
O Complex Configuration (System Admin)
X Expert Operator
Operations using the framework include all the operations typical of the monitoring system, e.g.,

verifying IDS alerts, plus responding to false alarms that (in this framework) produce an immediate
effect in the network.

Kill-Chain Phases:

X Reconnaissance
X Access
O Exploit Development

O Attack Launch

X Persistence

The killchain phases depend on what the monitoring system is capable of detecting. Reconnaissance
attacks, unauthorized access, and flows aimed at establishing persistence are examples of behavior
that could be flagged by a system.

Interdependencies: The OpenFlow backend assumes that it can operate without interfering with
other SDN applications outside the framework, e.g., installing switch rules that do not conflict.

Weaknesses: The coverage of the defense is very dependent on the details of its deployment: the
monitoring tools in place and the backends available to enforce the API. Onboarding new network
devices could result in policy errors if mistakes are made when registering the device with backends.
The monitoring tools must detect events accurately. If malicious events are not detected (false
negative), the ‘movement’ of network access does not actuate. Therefore, attackers can overcome
movement by staying under the radar of detection tools. If an attacker knows the framework is in
use, it may be possible for them to learn the behaviors that trigger the detectors, and guess which
APT calls are associated with those events (probably not difficult), enabling attackers to predict
the movement.

Types of Weaknesses:

X Overcome Movement
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X Predict Movement
O Limit Movement

X Disable Movement

Some movement could be limited by targeted attacks on an individual backend, which enforces
some API calls, but this is beyond the scope of the threat model.

Impact on Attackers: The technique narrows the gap between when an IDS or other monitoring
tool triggers and when a response is applied in the network. Compared to having an administrator
manually quarantine a host or update firewalls in response to an alert, an attacker has signifi-
cantly less time (or none) to finish the attack or evade the response. However, an attacker who
is able to stay under the radar of the IDS could evade the system entirely. It is possible that
administrators would set less aggressive thresholds for event detection in the framework, since false
positives resulting in sudden, incorrect connectivity loss could significantly impede benign network
operations.

Availability: The authors have a prototype and test scripts available online at: http://icir.
org/johanna/netcontrol.}!

Additional Considerations: None

Proposed Research: One direction for making the framework more easily deployable is automat-
ing the process by which devices are onboarded to the backend controls, e.g., using authoritative
sensors for network bindings. Another direction is incorporating host context, beyond network
traffic, into the decision process that applies the security responses. For example, hosts that are
known to have unpatched OS vulnerabilities and exhibit abnormal flows might have a more aggres-
sive traffic threshold for triggering the response compared to a fully-patched host performing the
same flows. A similar idea is incorporated into architectures such as Google’s BeyondCorp [149]
that combine host-context policies with role-based access control.

Funding: NSF

! Last accessed 5/9/2017.
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6.17 END POINT ROUTE MUTATION (EPRM)
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Resource

Details: This technique is aimed at mitigating network-availability attacks. In the threat
model, the attacker learns a set of critical links, then overwhelms these links through traffic flooding
attacks, denying service to the information flows between the endpoints that rely on these network
subpaths. The technique addresses this by providing a resilient routing function that performs
route mutation efficiently. Other end hosts acting as virtual routers (“peers”) are used to increase
routing diversity.

Description:

Details: End Point Route Mutation (EPRM) [150] uses route mutation to defend against
distributed denial of service (DDoS) attacks that target links and degrade quality-of-service (QoS)
requirements. EPRM formalizes the problem of finding a virtual path for a source-destination pair
through a set of peers. It computes a set of paths, then decides on a sequence by which to mutate
routes while satisfying two types of constraints: 1) QoS constraints and 2) a resilience constraint.
Example QoS constraints mentioned in [150] include:

e Bandwidth: “The available bandwidth of all virtual paths must be greater than the traffic
load generated by the source.” Otherwise, using a lower bandwidth path still leaves an effect
on the service.

e Number of hops: “Number of hops should be limited and the [end to end] delay must be
comparable to the delay of the actual physical path of the source-destination pair.”

The resilience constraint is one that ensures virtual paths are moving targets for attackers. It says
that a sequence of virtual paths should have minimum overlap in the links used in order to increase
unpredictability.

The authors note that finding all resilient virtual paths for a single flow is an NP-complete
problem, though they are able to use a small upper bound (3) on the number of intermediate peers
to make the computation feasible in a real use scenario. They find that even short-length virtual
paths using this size bound add enough variance to add protection against persistent attackers.

Entities Protected: This technique helps protect network links from DDoS attacks.

Deployment: This technique is intended for deployment on end hosts in a network. In
general, hosts are assumed to remain in the network (at least for predictable periods of time),
since they are configured as virtual routers connected with UDP tunnels. In the implementation
described in [150], packet forwarding is set up in kernel space using the Vsys API. The routing
paths are computed and installed in the forwarding tables of these hosts.
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Execution Overhead:

e Computing the set of feasible virtual paths can be expensive and increases as the network
size grows, though the authors claim their algorithm is more efficient than solving the general
single-source shortest path problem (e.g., using Dijkstra’s algorithm).

Memory Overhead:

e None

Network Overhead:

e Delay overhead associated with virtual paths that have more hops than the actual physical
path. In an experiment using ping and a two-peer virtual path, an average of 15 ms was
added to the delay.

Hardware Cost:
e None
Modification Costs:

O Data

O Source Code

O Compiler/Linker
X Operating System
[ Hardware

O Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
X Complex Configuration (System Admin)
O Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)

Expertise Required to Operate:
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X Seamless
O Simple Configuration
O Complex Configuration (System Admin)

0 Expert Operator
Kill-Chain Phases:

X Reconnaissance

0 Access

[0 Exploit Development
X Attack Launch

O Persistence

Reconnaissance activities related to delay timing could be thwarted by increased hops in virtual
paths.

Interdependencies: The technique assumes that peer end hosts exist in the network that are
configured as virtual routers.

Weaknesses: Details of how routing-table entries are installed into the hosts are vague in [150]. A
targeted attack at a component that provides controller functions or synchronization could cause
movement of the routing tables and virtual-path sequences to be slowed down or halted, enabling
reconnaissance and DDoS attacks against the installed virtual routes. The defense provides no
client-side protection, and compromising the host peers and their virtual forwarding tables could
derail this scheme. It is also possible that with enough initial reconnaissance, an attacker could run
the mutation set and sequence generation algorithms themselves using the real network information,
and potentially predict the next virtual paths between a source-destination pair. This could let the
attacker target new routes that have the effect of the original attack.

Types of Weaknesses:

X Overcome Movement
X Predict Movement
X Limit Movement

X Disable Movement

Impact on Attackers: The technique makes it more difficult for attackers to execute DDoS
attacks against targeted network links. It could make the attack more costly if the attacker tries to
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saturate other routes in order to reach the target. That said, an attacker who is able to compromise a
host (a peer in EPRM) or leverage known information about the network could potentially overcome
the defense.

Availability: The authors implemented EPRM in PlanetLab and evaluated it using a virtual
network. Currently, the prototype is not publicly available.

Additional Considerations: EPRM moves some network functionality into the set of end hosts,
which could affect the performance of hosts doing other computations. It is not clear how to best
use the technique in networks that having changing topologies (e.g., laptops and mobile devices that
come and go, or VMs that are provisioned on demand), where peers could disappear and interrupt
routing of other traffic. Peers must also be trusted, which could be an unreasonable assumption
depending on the network.

Proposed Research: Studying how to incorporate constraints beyond QoS and resilience could
be impactful (e.g., routing through peers that may have some trust score). Route mutation might
also be used to identify bots that continue predictable attack patterns even when bandwidth is
later increased (as Kang et al. [151] demonstrate), which could be incorporated into the technique.
Further, reconnaissance attacks that perform mapping based on delays could potentially be miti-
gated by the technique. These approaches could be evaluated alongside the main goal of relieving
DDoS attacks against critical links.

Funding: U.S. Army Research Office (ARO) and the Asymmetric Resilient Cybersecurity (ARC)
initiative at PNNL
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6.18 PSI: PRECISE SECURITY INSTRUMENTATION FOR ENTERPRISE NET-
WORKS

Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Resource, Scanning, Injection

Details: The threat model handled by the technique is broad and assumes that the goal of
attackers is to compromise machines, exfiltrate data, or disrupt service in a network while evading
detection and defense mechanisms. It assumes attackers will not infect the defense system (e.g., IDS
or SIEM monitoring) or the control plane of the software-defined network (SDN), which is used in
the technique. Attackers can use strategies like finding blind spots in the defense systems; adjusting
their posture after launching the attack; inducing collateral damage (like degrading network per-
formance by triggering deep packet inspection) through deliberate actions; and overloading defense
systems (e.g., denial of service using heavy traffic, though directly compromising systems’ logic is
out of scope). The technique addresses the threat by providing fine-grained and dynamic security
postures, leveraging SDN and network functions virtualization (NFV). Attack techniques can be
mitigated as long as they are detectable by the security appliances in the cluster, e.g., scanning,
resource attacks, and sending malicious payloads.

Description:

Details: Precise Security Instrumentation (PSI) [152] is a technique that supports dynamic
defenses in an SDN with precision in three dimensions: 1) isolation, so that security policies do not
interfere with one another, 2) context, so that policies can be customized to individual devices and
their security-related attributes (which the authors call “context”), and 3) agility, so that policies
are enforceable at fine-grained time scales, adapting to attacks as they launch and evolve.

PSI works by tunneling a device’s traffic to a server cluster (“PSI cluster”), which provides
an appropriate security appliance on demand for any type of traffic produced by the device. NFV
is used to build small, virtualized appliances (e.g., Bro, Snort) and an SDN within the PSI cluster
is used to steer traffic within the cluster to compose these services. The new appliances live on
shared commodity hardware to support scalability.

Each device’s traffic tunnel is created by having its first-hop edge switch tunnel packets to the
gateway switch of the PSI cluster. The controller sees new traffic (Packet-In messages) and installs
rules that steer the traffic through the appropriate appliances in the cluster. Events detected by
the appliances are passed to the Policy Engine within the cluster, which results in context tags
being added to packet headers and determines the context-based forwarding. The isolation and
context-based security goals are addressed by having appliances created on demand for individual
devices, which have individual policies, when their contexts change. Agility is achieved because new
security functions are virtualized and can be deployed rapidly to enforce device-specific policies.
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Entities Protected: This technique protects the network from being attacked from com-
promised machines.

Deployment: This technique is intended for deployment in an enterprise network. An SDN
is used within the PSI cluster to steer traffic.

Execution Overhead:

e Some execution overhead on the commodity hardware in the PSI cluster running the control
plane and appliance VMs.

e Individual load on controllers is mitigated by automatically scaling out when the arrival rate
of Packet-In messages increases.

Memory Overhead:

e Some memory overhead on the commodity hardware in the PSI cluster running the appliance
VMs and virtual SDN switches.

Network Overhead:

e Overhead from appliance monitoring during Packet-In processing.

e Minimal control-plane processing overhead within the cluster due to prefetching and proactive
installation of the traffic path through assigned appliances.

Hardware Cost:
e Hardware costs related to creating VMs on demand for new virtualized appliances.
Modification Costs:

U Data

X Source Code

O Compiler/Linker
O Operating System
0 Hardware

X Infrastructure

Source code for virtualized appliances must be modified to expose PSI-added tags in the packet
headers. Modifying switch tunneling is needed to send traffic from edge switches to the PSI cluster.
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Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)
X Custom Programmer (General Knowledge)

X Custom Programmer (Experiment/Low-Level/Kernel)

Tag-based forwarding rules are set up on the SDN switches using custom low-level code. The
OpenDaylight SDN controller is also modified to handle events from appliances like Snort.

Expertise Required to Operate:

[0 Seamless
O Simple Configuration
O Complex Configuration (System Admin)

X Expert Operator

An expert operator provides policies via a GUI or domain-specific policy language.

Kill-Chain Phases:

X Reconnaissance

X Access

[0 Exploit Development
X Attack Launch

X Persistence

Interdependencies: Commodity hardware used to support all the functions of the PSI cluster
must be available on the network.

Weaknesses: Compromises to the PSI cluster, or the inability to modify packet headers with added
context tags from appliances, could limit or disable steering traffic through the security appliances
and onto the destination. Naive implementations could open PSI up to control-plane flooding
attacks. Sufficient space is needed in the packet header to add PSI-specific tags for matching
against traffic context. As in other monitoring systems, attackers could craft traffic to stay under
the radar of installed appliances, overcoming some movement.

Types of Weaknesses:
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X Overcome Movement
O Predict Movement
X Limit Movement

X Disable Movement

To predict movement, an attacker could potentially find a way to leak the traffic-path rules proac-
tively installed in the cluster for the device; additionally, she would need to predict (or evade) the
packet-header tags added due to appliance events in that traffic path. The former may be beyond
the scope of the threat model.

Impact on Attackers: As in [148], the technique narrows the gap between when an IDS or other
monitoring tool triggers and when a response is applied in the network. Because the gateway
tunnels all traffic through the PSI cluster, successful attacks must succeed despite flowing through
the security appliances, which could be difficult for an attacker.

Availability: The authors implemented a prototype of PSI, but it is not currently publicly avail-
able.

Additional Considerations: While the authors of PSI focus on its scalability in an elastic
compute environment, the architecture does in fact create choke-points that could be attractive
targets to attackers.

Proposed Research: The authors describe a use case of PSI where potential false-positive alerts
(near the detection threshold) could result in a CAPTCHA challenge rather than an automatic
“block” response on traffic. The CAPTCHA could be used to determine whether the flows are
actually authorized by the legitimate human user on the device in question. This is a compelling
use case, and it raises a separate research question for usable security: how can the traffic data
and decision process that PSI uses (with composable appliances and policy) be explained to a
human in a way that lets a non-expert verify that PSI is working as expected and that its policies
match the intent? There may also be cases where illegitimate traffic is not obviously malicious or
unauthorized, so a human cannot easily verify the connections.

Funding: NSF, Intel Labs University Research Office
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6.19 DYNAMIC FLOW ISOLATION
Defense Category: Dynamic Networks
Defense Subcategory: None
Threat Model:
Attack Techniques Mitigated: Scanning, Resource

Details: This technique [153] was designed to limit the connectivity of endpoints on a network
only to the connections that are necessary at any point in time, given a network policy and context.
While the technique is in use, host address information gained by an attacker may have limited
use because flows to or from the host may be dropped by the network switches depending on the
context. This could interrupt command and control sessions, and limit both reconnaissance and
lateral movement within the network.

Description:

Details: Dynamic Flow Isolation (DFI) is a technique that dynamically changes network-
level access control in response to changing context in the network (e.g., time of day, security alerts
from third-party tools). DFI leverages Software-Defined Networking (SDN) to apply network access
policies on-demand to systems on an enterprise network. DFI pushes flow rules to SDN switches
that allow, rate limit, or block ingress and egress flows from endpoints; the rules are compiled when
new flows are initiated and checked against the current policy, which is updated in response to
changing context by policy decision points (PDPs) that process sensor information.

The DFI architecture maintains information about current network bindings of endpoints as
well as current policy directives. Using the binding database, a new flow sent to the SDN controller
is matched against the current policies during the compilation process, and an OpenFlow rule that
enforces the matched policy is formed and sent to the SDN switch. This rule installation occurs
before the initial packet actually reaches the controller, because DFI receives the packet from a
controller proxy and processes it before sending it northbound to the controller.

Policies in DFI can be informed by a variety of sensors internal and external to the network,
such as authentication events, physical location sensors, or antivirus systems. Sensors are assumed
not to be networked on the data plane that DFI can restrict, so that policy changes do not interfere
with sensor availability. User interfaces that let administrators quarantine hosts or make other
access decisions can be hooked into DFI as sensors, allowing for human-in-the-loop control in the
framework. PDPs are in charge of handling sensor data and populating the policy database with
current policies.

Entities Protected: This technique helps hide hosts and servers from scanning and from
targeted attacks during times when these machines do not need access, as decided by event-driven
decision points.

Deployment: This technique requires SDN infrastructure to be at least partially deployed
(i.e., controller and one or more SDN switches). Source code may need to be modified to connect
desired sensors to PDPs.
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Execution Overhead:
e None

Memory Overhead:
e None

Network Overhead:

e Latency overhead occurs when a new flow is sent to the controller by the SDN switch, then
enters the DFI access-decision process. This overhead occurs at most once per flow, and is
independent of the flow size. If a matching rule for a new flow is already installed on the
switch (e.g., if the same user has been active and a previous rule has not expired), there is
no overhead as the initial packet and flow are handled by the switch at line speed.

Hardware Cost:

e Servers for DFI service components and controller proxy.

e If SDN is not already deployed in the network, one or more SDN switches and a SDN con-
troller.

Modification Costs:

0 Data

X Source Code

O Compiler/Linker
0 Operating System
0 Hardware

X Infrastructure
Expertise Required to Implement:

O Simple Configuration/Installer
O Complex Configuration (System Admin)

X Custom Programmer (General Knowledge)
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O Custom Programmer (Experiment/Low-Level /Kernel)
Expertise Required to Operate:

X Seamless
O Simple Configuration
X Complex Configuration (System Admin)

[J Expert Operator
Kill-Chain Phases:

X Reconnaissance
X Access
0 Exploit Development

X Attack Launch

X Persistence

Interdependencies: This technique is dependent on having SDN infrastructure at least partially
deployed. If it is deployed on a network with both traditional and SDN switches, only flows with
SDN switches in their path will have the network-access policy enforced. DFI can be combined
with other network-based detection and monitoring systems.

Weaknesses: DFI assumes that its components and the SDN switches and controllers are not
compromised. It is possible that targeted attacks or lateral movement could succeed if the policy
allows connectivity to affected endpoints at that point in time. In these cases, attackers could get
lucky in choosing when or where to launch attacks. Alternatively, they could use other reconnais-
sance attacks to learn about how the decision points change policy in the network, then trigger
policy changes via sensor attacks to predict movement. The technique does not protect against
client-side attacks, though endpoint monitoring could be used as a sensor for a PDP that restricts
access to potentially compromised endpoints. Finally, some sensors that feed into DFI could be
targeted by attacks that result in limited movement (e.g., denial of service attacks on sensors, so
that decision points do not detect events and change policy).

Types of Weaknesses:

X Overcome Movement
X Predict Movement

X Limit Movement
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0 Disable Movement

Impact on Attackers: This technique could have varying levels of impact on an attacker de-
pending on what the attacker is trying to accomplish. It could disrupt lateral movement, ongoing
command and control attacks, and decrease the likelihood of an attack succeeding. For advanced
threats determined to overcome access movement by DFI, this could greatly increase the recon-
naissance needed for an attack to succeed.

Availability: The authors have prototyped the system and evaluated it on a small pilot network.
The prototype is not publicly released.

Additional Considerations: How well DFI enforces the principle of least privilege for network
access depends on the policy decision points that are implemented. DFI’s architecture is extensible
to new decision points that could make access control more or less restrictive than in the case
piloted by the authors—where end hosts have broad connectivity if and only if they have authorized
users logged in, and are otherwise limited to reaching the authentication service.

A system administrator needs to configure the SDN to expire switch rules with the organiza-
tion’s desired security-usability tradeoff in mind. If the time to live (TTL) on a rule is very large,
there may be a time gap where access policies have changed but are not yet enforced, potentially
leading to unauthorized flows until the rule expires. Setting the TTL to be too small could lead to
increased latency due to the switch more frequently sending packets to the DFI controller proxy.

Proposed Research: Parts of the DFI architecture could be used for data collection, or for
actuating other security controls beyond network access control. For example, instead of just
restricting network access, decision points observing changing contexts could also trigger endpoint
security tools that might incur too much overhead to run constantly, or turn on aggressive network
monitoring tools. Another research direction is exploring how events sensed by the core DFI
components themselves (e.g., flows being initiated, or flows that are dropped due to DFI-installed
rules) could trigger policy changes. For example, hosts could be used as honeypots to detect
unauthorized access using the network, resulting in isolation and monitoring actions for that host
and others in the network.

Funding: Department of Defense
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