
Malware Analysis / 
Reverse Engineering

Bob Nissen



Bob

• 42 Years with NSA

• Overseas Field Tour

• Last 20 in Cyber Security

• Subject Matter expert (SME) in Malware Analysis

• Analyze malicious code employing static analysis, reverse engineering 

and dynamic analysis techniques. 

• Reverse engineer communications protocols 

• Determine initial infection and capabilities of the malware 



Why Do Malware Analysis?
Find / Stop

• Quick Triage v In-depth analysis

• Time available

• Focus of Analysis

• Find

• Develop Indicators of Compromise

• Infected systems

• Network traffic

• Stop

• Removal

• Neuter

• Block or re-direct



Why Do Malware Analysis?
Learn

• Adversary (Developer and User)

• Interests

• Attribution
• Difficult

• Which features are under whose control?

• Capabilities
• Data collect or destroy

• Interoperable?

• Common code base or design base?

• Across OS’s



Why Do Malware Analysis?
Understand

• MW Command and Control

• Emulate

• Decode exfiltration

• Damage assessment

• Lineage

• not always more, refactoring can be less

• Archive helps



Why Do Malware Analysis?
Understand

• Assessing programmers’ skill

• Programmers background

• Sometimes looks like a class assignment

• Concentrate on what we know

• IP address - bunch of ASCII digits or a 32 bit hex number?

• Three XOR’s in a row

• Code can hide, but its has to run

• Obfuscation can’t get in way of operations

• Obfuscation as a signature

• Design is not “yours”



Malware Reverse Engineering
Some This’s and That’s

• Can hide, but has to run

• Assume it “works”

• Design is “good”

• Not how I would have written it

• Code made sense to ‘someone’

• Sudoku

• Need to zoom in and out

• Iterative

• Balance between static and dynamic

• Difficulty in jump jamming



Malware Reverse Engineering
Some This’s and That’s

• Code v API’s

• Nothing happens at the system level without API’s

• Nothing happens at the bit level without code

• Careful with high level code, especially decompilers

• It's the machine code, not the comments 

• Complex processors, can you even trust assembly?

• Reverse Engineering x86 Processor Microcode CanSecWest 2018

• Objects recovery

• Under the hood, ‘just’ structures

• Mapping methods to objects
• Can look like “unexplored” code



Malware Reverse Engineering
Some This’s and That’s

• Programmer or compiler?

• Beware compiler optimization

• Optimizing out zeroing an array just before freeing

• Unrolling loops

• Wrapper (marshaling) look-alikes

• Read/write get wrapped almost the same

• Difference that matters? 

• Beware of printf and other time sucks

• ‘Right of passage’

• Understanding different parameter passing conventions



Perils of Dynamic Execution
Miscellaneous Thoughts

• Long timeouts

• Long loops w/unused results

• MW running out the clock

• Discontinuous API calls

• Data flow/tracking

• Multiple Threads 

• Always watching each other

• Emulation, stepping: How/when to switch

• Treatment of Dropped Files

• Once get second generation, how to ‘source’

• Timeliness and Source DNS for ‘Live’

• Under adversary’s control



Perils of Dynamic Execution
Miscellaneous Thoughts

• Deniable Encryption

• Desired Text xor D-Key ➔ Encrypted Text

• Encrypted Text xor Alternate Text ➔ A-Key

• Transmit (and assume interception of) Encrypted Text

• Make A-Key “easy” to find 

• A-Key xor Encrypted Text ➔ Alternate Text

• Revert and OS State

• Saving User space v kernel v disk

• Thread Local Storage

• TLS initialization callback runs before entry point.



In Transit

• Could be Self Contained

• May download additional 

components

• Sense Environment

• May drop additional files

• May write registry settings

In Stalled

• Environmental Dependencies

• Reliant on other pieces

• Registry settings

• Configuration files

• OS dependencies

• DLL’s

• ‘Live’ in a certain path

Perils of Dynamic Execution
Consider the Source



Perils of Dynamic Execution
The right Stuff

• Command Line Arguments

• Challenge/Response to external systems

• Caution with concolic execution if a hash

• Network paths

• Missing or incorrect DLL’s



Perils of Dynamic Execution
The right Stuff

• Analytic environment detection

• Is only 192.168.0.0/16 available?

• DNS expectations

• Keyboard type

• R U a VM?

• Challenge/Response

• Port Knocking

• Unsleeping 



Perils of Dynamic Execution
Incomplete Reconstruction

• Brief PE Format tangent

• File can extend beyond “PE”

• Headers are loaded into Memory

• Loader maps from disk into memory

• Section Table contains
• Offset, length On Disk

• Offset (RVA), length In Memory

• Sections
• Not contiguous

• Start on 2K (usually) boundary

• Loader accepts overlaps, but who wins?

• Sections do not have to map in order

• Padding/End of File not mapped

• Names are meaningless to loader

DOS Header

PE Header

Section Tables

Section 1

Section 2

Section n

On Disk

DOS Header

PE Header

Section Tables

Section 1

Section 2

Section n

In Memory

= Unmapped



Perils of Dynamic Execution
Incomplete Reconstruction

• Section Tables impact LOADING into 
memory (Where bytes go)

• Data Directories(in PE Optional 
Header) defines USAGE (What bytes 
mean)

• Address (RVA)/ size of a table or 
string.

• Imports, exports, resources, etc.

• No required correlation between 
sections and usage

• Can be NULL

DOS Header

PE Header

Section Tables

Section 1

Section 2

Section n

In Memory

IMAGE_DIRECTORY_ENTRY_EXPORT
IMAGE_DIRECTORY_ENTRY_IMPORT
IMAGE_DIRECTORY_ENTRY_RESOURCE
IMAGE_DIRECTORY_ENTRY_EXCEPTION
IMAGE_DIRECTORY_ENTRY_CERTIFICATE
IMAGE_DIRECTORY_ENTRY_BASERELOC
IMAGE_DIRECTORY_ENTRY_DEBUG
IMAGE_DIRECTORY_ENTRY_ARCHITECTURE
IMAGE_DIRECTORY_ENTRY_GLOBALPTR
IMAGE_DIRECTORY_ENTRY_TLS
IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG
IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT 
IMAGE_DIRECTORY_ENTRY_IAT 
IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT 
IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR 



Perils of Dynamic Execution
Incomplete Reconstruction

• Sections are somewhat arbitrary

• Yet another PE Header structure Data Directories contains offset, length for 
kind (i.e. import table)

• Names can be almost anything < 8 characters

• Mind the Gap(s)/unmapped

• Some malware uses unmapped (either interstitial or terminal) for config

• Often ‘beyond’ PE file, but seen between DOS and PE Headers

• Punch Line – Once written to memory, original may not be reversable

• Don’t know what Don’t know

• Unmapped never written in memory, can’t reconstruct from memory image

• When unpacking creates new memory regions, how to ‘sectionize’



Getting ‘off-cut’

• Intel instructions are 1 to many bytes long

• A anti-disassembly technique is to jump into middle of multi-byte 

instruction

• Linear disassembly vs flow disassembly:

jmp short near ptr loc_2+1 
; -----------------------------------------------
 loc_2:; CODE XREF: seg000:00000000j
 call near ptr 15FF2A71h 
 or [ecx], dl 
 inc eax 
; -----------------------------------------------------
 db 0

jmp short loc_3 
; ----------------------------------
 db 0E8h 
; -----------------------------------
 loc_3: ; CODE XREF: seg000:00000000j 
 push 2Ah 
 call Sleep



Some challenges

• ID dev shops

• Practices

• Tells, such as directory structures

• Handprints

• ‘groups’ of functions that appear together

• Shopping cart analogy

• Network Protocol 

• Reverse meanings
• “Opcodes“ – choices, gaps, organization

• Some way to document analysis and compare

• Match client and servers

• Polyglot (Work in progress)



Some challenges

• Catch 22

• Do we “see” X, when we don’t know how to look for it?

• Control Flow Graphs

• Structural differences between ‘normal’ and ‘malicious’?

• What features can be extracted for ML?

• Using disassembler (GHIDRA) ‘decisions’ as parameters

• Selection of features for different purposes:

• Family 

• Function

• Good/Bad

• Signature/Interpret blobs of code

• Searching

• Understanding



Some challenges

• Shellcode

• Detection

• Emulation

• Usually needs some sort of environment

• How to prepare RE’s for changing environment

• New processor (i.e. switch from x86 to x64, to ???)

• Up/coming language (RUST, GO)



Questions / Discussion



POLYGLOT

• Where does “format Start?

• Byte 0 

• Last byte

• Within first 1024 bytes

• Find “hollow” space

• Multiple “zip” 

• MS Office

• Jar

• Android



Microbiology Detour



Microbiology Detour

• mRNA 

• Single strand of genes (A,C,U,G)

• Three gene sequence (codons) 

translate to one of 20 amino acids

• Fixed length instructions

• Create a Protein (chain of 

peptides) that ‘run’ life’s processes

• There’s a header and footer 

sequence



Mutation 



Point 
Mutation



Frameshift



Thank you!


	Slide 1: Malware Analysis / Reverse Engineering
	Slide 2: Bob
	Slide 3: Why Do Malware Analysis? Find / Stop
	Slide 4: Why Do Malware Analysis? Learn
	Slide 5: Why Do Malware Analysis? Understand
	Slide 6: Why Do Malware Analysis? Understand
	Slide 7: Malware Reverse Engineering Some This’s and That’s
	Slide 8: Malware Reverse Engineering Some This’s and That’s
	Slide 9: Malware Reverse Engineering Some This’s and That’s
	Slide 10: Perils of Dynamic Execution Miscellaneous Thoughts
	Slide 11: Perils of Dynamic Execution Miscellaneous Thoughts
	Slide 12: Perils of Dynamic Execution Consider the Source
	Slide 13: Perils of Dynamic Execution The right Stuff
	Slide 14: Perils of Dynamic Execution The right Stuff
	Slide 15: Perils of Dynamic Execution Incomplete Reconstruction
	Slide 16: Perils of Dynamic Execution Incomplete Reconstruction
	Slide 17: Perils of Dynamic Execution Incomplete Reconstruction
	Slide 18: Getting ‘off-cut’
	Slide 19: Some challenges
	Slide 20: Some challenges
	Slide 21: Some challenges
	Slide 22: Questions / Discussion
	Slide 23: POLYGLOT
	Slide 24: Microbiology Detour
	Slide 25: Microbiology Detour
	Slide 26: Mutation 
	Slide 27: Point Mutation
	Slide 28: Frameshift
	Slide 29

